小鼠神經干細胞分化為神經元
實驗概要小鼠神經干細胞分化為神經元主要試劑無菌水、DPBS、0.05%胰蛋白酶胰蛋白酶、細胞基礎培養液、 PDL、laminin、小鼠神經分化培養液(Neuron M)主要設備4孔板、12mm細胞培養玻片實驗步驟① 在4孔板每個孔中放置一塊12mm細胞培養玻片,每孔加入100ug/mL的PDL500μL,室溫靜置過夜。② 吸去PDL,用無菌水沖洗玻片,室溫靜置晾干;每孔加入10ug/mL的laminin500μL,37℃、5%CO2靜置過夜。③ 將小鼠神經干細胞以0.05%的胰蛋白酶消化2 min,以等體積的10%FBS終止,1000 rpm離心5 min,棄上清并用Neuron M重懸細胞,以細胞密度為1×104個/ml接種于棄除laminin的四孔板。④ 每隔2天半量更換Neuron M,到第21天時,分化完成,可在鏡下觀察到神經元細胞與神經絲。......閱讀全文
小鼠神經干細胞分化為神經元
實驗概要小鼠神經干細胞分化為神經元主要試劑無菌水、DPBS、0.05%胰蛋白酶胰蛋白酶、細胞基礎培養液、 PDL、laminin、小鼠神經分化培養液(Neuron M)主要設備4孔板、12mm細胞培養玻片實驗步驟① 在4孔板每個孔中放置一塊12mm細胞培養玻片,每孔加入100ug/mL的PDL500
NSCs定向分化為神經元的預測系統
神經干細胞(NSCs)具有自我更新和三系分化的潛能,能被誘導分化成神經元、星形膠質細胞和少突膠質細胞,具有重要的神經中樞神經系統疾病(CNS)再生修復研究和應用價值。將NSCs定向分化為神經元一直是該領域的重要研究方向,常見的誘導藥物包括有神經營養因子、小分子藥物或激素等。傳統的藥物篩選鑒定方法
氧化石墨烯可調節多巴胺神經元分化
近日,中科院上海生命科學研究院健康科學研究所樂衛東小組發現,納米材料氧化石墨烯在胚胎干細胞向多巴胺神經元分化過程中可發揮重要作用。相關研究日前發表于《納米醫學》。 中腦多巴胺能神經元的退行性死亡是帕金森氏癥的最顯著特征,通過干細胞誘導多巴胺神經元分化并進行細胞移植治療已經成為潛在的帕金森氏癥治
GDNF影響神經元的發育和分化的作用介紹
不同腦區在不同發育期的GDNFmRNA表達的量有所不同,如紋狀體在生后零天(P0)表達量達高峰;小腦在出生時和成年期有一個短暫的高表達。隨年齡的增長,中樞神經系統的GDNFmRNA水平出現明顯下降趨勢,到成年期,大部分區域僅有很低表達。因此,GDNF可能對發育期的多種神經元的存活和分化起重要作用
Nanomedicine:健康所發現納米材料可調節多巴胺神經元分化
近日,國際學術期刊《Nanomedicine》在線發表了健康科學研究所樂衛東研究組題為“Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons”的研究論文,
上海生科院等發現納米材料可調節多巴胺神經元分化
近日,國際學術期刊Nanomedicine在線發表了中國科學院上海生命科學研究院健康科學研究所樂衛東研究組題為Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neuro
轉錄因子可在腦內將膠質細胞轉分化為神經元
6月24日,中國科學院上海生命科學研究院神經科學研究所的劉月光與繆慶龍等在《神經科學雜志》上發表題為Ascl1converts dorsal midbrain astrocytes into functional neurons in vivo 的論文。這一項研究成果建立了一種在體轉分化高效獲得
健康所發現microRNA調節多巴胺能神經元分化新機制
眾所周知,中腦多巴胺能神經元的退行性死亡是帕金森病的最顯著特征,了解其發育的分子生物學機制對探索帕金森病的發病機理以及治療帕金森病都有著至關重要。然而,對于胚胎干細胞向多巴胺能神經元的發育過程的機制至今還不清楚。 中科院上海生命科學研究院健康所神經基因組博士研究生楊德華等在樂衛
北大研究揭示轉錄因子驅使神經元終末分化新機制
Developmental Cell雜志在線發表了北京大學生命科學學院宋艷研究組題為“Mitotic implantation of the transcription factor Prospero via phase separation drives terminal neuronal d
GDNF的生物學效應影響神經元的發育和分化
不同腦區在不同發育期的GDNFmRNA表達的量有所不同,如紋狀體在生后零天(P0)表達量達高峰;小腦在出生時和成年期有一個短暫的高表達。隨年齡的增長,中樞神經系統的GDNFmRNA水平出現明顯下降趨勢,到成年期,大部分區域僅有很低表達。因此,GDNF可能對發育期的多種神經元的存活和分化起重要作用。
成纖維細胞轉分化為神經元的研究取得進展
神經干細胞以及神經元研究是神經系統疾病治療和再生醫學的前沿領域,對理解大腦的發育、可塑性以及神經系統疾病的診斷和治療有重要價值。隨著我國人口老齡化趨勢的加劇,腦缺血、中風以及老年癡呆、帕金森等神經系統損傷和退行性疾病的患病比例不斷增高,這些疾病中神經元的功能退化和死亡是對研究治療和藥物開發的極大
直擊兩大技術熱點:CRISPR光活化技術誘導神經元分化
CRISPR-Cas9 和光遺傳學這兩大技術經過近幾年的發展,已經在許多研究領域中發光發熱。而將這兩者結合起來的領銜科學家無疑要算上日本東京大學的化學家Moritoshi Sato,他曾開發一種光學開關蛋白:“Magnets”(磁鐵蛋白),他們將其利用在光活化技術中,開發出光激活CRISPR轉錄
膠質細胞向神經元轉分化治療神經性疾病的研究獲進展
4月8日,《細胞》期刊在線發表了題為《通過CRISPR-CasRx介導的膠質細胞向神經元的轉分化治療神經性疾病》的研究論文,該研究由中國科學院腦科學與智能技術卓越創新中心(神經科學研究所)、上海腦科學與類腦研究中心、神經科學國家重點實驗室楊輝研究組完成。該項研究通過運用最新開發的RNA靶向CRI
如何參與促進骨髓間充質干細胞向神經元樣細胞的分化?
近來的研究表明,microRNA在干細胞自我更新及其分化中發揮重要的調節作用。來自中國醫科大學附屬第一醫院的鄒德峰博士所在課題組認為,microRNA可能參與了干細胞定向分化為神經元的過程,可能是定向誘導分化的重要靶點。研究設計對骨髓間充質干細胞與神經干細胞或神經元差異最明顯的microRNA進
Dev-Cell-|-宋艷組揭示轉錄因子神經元終末分化的新機制
Image credit: Zhi Ye 由抑制性組蛋白修飾H3K9me3所標記的異染色質在細胞分化過程中變得高度凝聚,其區域顯著擴展 【1,2】,形成防止已分化細胞命運逆轉的重要壁壘。與此相對應,H3K9me3+異染色質區域的解壓縮可以極大提高細胞重編程的效率【3, 4】。過去的研究表明,H3K
BDNF人腦源性神經營養因子促進神經元存活生長和分化
產品說明: 腦源性神經營養因子(Brain-derived neurotrophic factor ,BDNF)是是神經營養生長因子NGF家族的一員。神經營養因子家族由至少四種蛋白質組成,包括NGF、BDNF、NT-3和NT-4/5。這些分泌的細胞因子被合成為前肽,經蛋白水解處理產生成熟的
轉分化的分化特點
轉分化(trans-differentiation),如水母橫紋肌細胞經轉分化可形成神經細胞、平滑肌細胞、上皮細胞,甚至可形成刺細胞。分化程度低的神經干細胞也可形成骨髓細胞和淋巴樣細胞;在肝纖維化時,肝臟星狀細胞轉分化成肌纖維母細胞等。
性別分化的分化條件
化學物質后縊是一種海生無脊椎動物,雌性個體像顆豆子,有一個頂端分叉的長吻,體長6㎝左右;雄性個體大小只有雌性的1/500,沒有消化器官,寄生在雌性個體的子宮里。雌后縊成熟后,在海里產卵,卵孵化成幼蟲。這些幼蟲的性別為中性。如果落到海底生活,就發育成雌蟲;如果落到雌蟲的吻部,就發育為雄蟲。如果把落在吻
人胚胎干細胞分化成神經前體細胞和多巴胺能神經元
實驗概要人胚胎干細胞分化成神經前體細胞和多巴胺能神經元主要試劑DPBS、DMEM/F12、1.5 U/mLDispase、鼠黏連蛋白(Laminin,20 μg/mL)、1U/MlAccutase酶、人胚胎干細胞擬胚體形成培養基、神經誘導培養基(NIM)、人神經分化培養液(NDM)、FGF8
細胞的脫分化和再分化
各種植物細胞在植物體內都處于分化狀態。要使植物細胞從分化狀態過渡到有繁殖能力的分生狀態,其細胞結構必須發生深刻的變化,否則無法完成這個過渡。這種在植物體上已分化的細胞和組織,在培養條件下逐漸恢復到分生狀態的過程,叫作脫分化。已經脫分化的細胞在一定條件下,又可經過愈傷組織或胚狀體,再分化出根和芽,形成
保持干細胞狀態還是分化為功能性神經元,UPF1蛋白來決定
近日加州大學科學家發現了UPF1蛋白的新功能,該蛋白能夠決定神經元前體細胞是否保持干細胞狀態還是分化成為功能性神經元。該研究對開發治療諸如自閉癥,精神分裂等神經系統疾病的藥物有重要意義。相關報道發表在近期的Cell Reports雜志上。 該研究稱UPF1能夠控制無義RNA降解(non
植物細胞的脫分化和分化培養
一、實驗原理 分化了的植物根、莖、葉細胞往往具有全能性,在一定條件下進行離體培養,給于一定的營養與激素,可以脫分化為愈傷組織,由愈傷組織制備成細胞懸浮液,在一定的條件下經振蕩培養,逐漸形成具有兩極性的胚狀體,經過進一步的分化培養,給于不同的營養和激素成分,又可以生出完整的
傳分化系數
中文名稱:遺傳分化系數英文名稱:genetic differentiation coefficient定 義:根井正利(Masatoshi Nei)提出來的估測種群間和種群內遺傳相似性的指數,以亞種群間的遺傳分化占總的遺傳多樣性的比例來表示。一般用符號GST表示。應用學科:生態學(一級學科),
分化的定義
分化是指在分裂基礎上晚近獲得的多細胞生物個體因生存行為分工而在個體體內細胞之間形成的形態與功能的差異。這種差異體現在不同類型的細胞發育成不同的組織器官來完成的不同生物行為機能,而這些機能分工的統一協調共同完成生命個體及群體的生命組織活動。
神經元細胞根據神經元的機能分類介紹
1.感覺(傳入)神經元: 接受來自體內外的刺激,將神經沖動傳到中樞神經。神經元的末梢,有的呈游離狀,有的分化出專門接受特定刺激的細胞或組織。分布于全身。在反射弧中,一般與中間神經元連接。在最簡單的反射弧中,如維持骨骼肌緊張性的肌牽張反射,也可直接在中樞內與傳出神經元相突觸。一般來說,傳入神經元
植物組織培養中的脫分化和再分化
植物組織培養(plant tissue culture)的理論根據是植物細胞的全能性。但是,在一個完整的植株上,各部分的體細胞只能表現一定的形態,承擔一定的功能,這是由于受具體器官或組織所在環境影響的緣故。植物體的一部分一旦脫離原來所在的器官或組織,成為離體狀態時,在一定的營養、激素等外界條件下,植
植物組織培養中的脫分化和再分化
植物組織培養(plant tissue culture)的理論根據是植物細胞的全能性。但是,在一個完整的植株上,各部分的體細胞只能表現一定的形態,承擔一定的功能,這是由于受具體器官或組織所在環境影響的緣故。植物體的一部分一旦脫離原來所在的器官或組織,成為離體狀態時,在一定的營養、激素等外界條件下,植
細胞分化的簡介
細胞分化(cell differentiation)是指同一來源的細胞逐漸產生出形態結構、功能特征各不相同的細胞類群的過程,其結果是在空間上細胞產生差異,在時間上同一細胞與其從前的狀態有所不同。細胞分化的本質是基因組在時間和空間上的選擇性表達,通過不同基因表達的開啟或關閉,最終產生標志性蛋白質。
細胞分化的檢測
細胞角蛋白抗原(CK)實驗步驟癌胚抗原(CEA,CD66e)實驗步驟? ? ? ? ? ? ?
細胞群的分化
從分子水平看,細胞分化意味著各種細胞內合成了不同的專一蛋白質(如水晶體細胞合成晶體蛋白,紅細胞合成血紅蛋白,肌細胞合成肌動蛋白和肌球蛋白等),而專一蛋白質的合成是通過細胞內一定基因在一定的時期的選擇性表達實現的。因此,基因調控是細胞分化的核心問題。