核磁共振在食品領域部分案例分享
案例一:不同超聲波輔助壓力處理下雞肉的水分相態及運動性的變化圖1 不同超聲波輔助壓力處理對雞肉T2圖譜影響注:·J0-J5為不同超聲波輔助壓力處理;T21為結合水,T22為不易流動水,T23為自由水;·不同超聲波壓力輔助處理后,自由水向不易流動水轉化,雞肉的持水力增強。案例二:不同種膠體及不同濃度膠體T2弛豫時間圖譜圖2 不同種及不同濃度膠體T2弛豫時間圖譜案例三:不同溫度下圣女果儲藏過程的品質變化圖3. 不同儲藏溫度對圣女果儲藏過程氫質子密度加權成像的影響圣女果在25℃儲藏腐爛速度明顯比4℃的快,25℃條件從第3天開始就出現腐爛,而4℃條件下到第11天內部才開始出現明顯腐爛,且25℃條件下圣女果的腐爛程度快。......閱讀全文
核磁共振在食品領域部分案例分享
案例一:不同超聲波輔助壓力處理下雞肉的水分相態及運動性的變化圖1 不同超聲波輔助壓力處理對雞肉T2圖譜影響注:·J0-J5為不同超聲波輔助壓力處理;T21為結合水,T22為不易流動水,T23為自由水;·不同超聲波壓力輔助處理后,自由水向不易流動水轉化,雞肉的持水力增強。案例二:不同種膠體及不同濃度膠
核磁共振波譜儀在食品分析中的應用
核磁共振波譜儀是一種基于特定原子核在外磁場中吸收了與其裂分能級間能量差相對應的射頻場能量而產生共振現象的分析方法的儀器。核磁共振波譜儀通過化學位移值、譜峰多重性、偶合常數值、譜峰相對強度和在各種二維譜及多維譜中呈現的相關峰,提供分子中原子的連接方式、空間的相對取向等定性的結構信息。核磁共振波譜儀現已
核磁共振方法對肉品食品持水性的研究應用
持水性低場核磁T2弛豫分析,各個峰反映的是肌原纖維細胞內/外及其間隙中的水分、纖維束外部的水分等。水分的遷移、轉化反映出細胞通透性、蛋白凝膠結構、肌肉纖維等組織的改變。大量研究表明:肉品的T2弛豫參數,與其持水性(蒸煮損失、離心損失等)高度相關。應用T2弛豫研究體系中的持水性能同樣適用于以下:凝膠類
核磁共振技術在食品檢測方面的應用
綜述國內外核磁共振技術在食品檢測方面的技術研究。從核磁共振技術定義與分類,及其對食品成分、分子結構的分析以及水果品質無損檢測等方面的應用進行闡述。從目前的應用現狀來看,該技術在食品檢測方面具有快速、準確以及不損壞原料的優點,但在實際的應用中也還存在一些問題,有待于進一步深入研究。關鍵詞:核磁共振技術
核磁共振波譜法在食品分析中的應用
一、概述核磁共振(Nuclear? Magnetic? Resonance,NMR)波譜是一種基于特定原子核在外磁場中吸收了與其裂分能級間能量差相對應的射頻場能量而產生共振現象的分析方法。核磁共振波譜通過化學位移值、譜峰多重性、偶合常數值、譜峰相對強度和在各種二維譜及多維譜中呈現的相關峰,提供分子中
核磁共振波譜技術在食品摻假鑒別中的應用研究
核磁共振波譜技術具有快速無損、操作簡單及重復性好等優點,近年來被廣泛應用于食品摻假鑒別領域。利用核磁共振技術中的低場核磁、定量核磁以及雜核核磁等技術能夠對摻假不同成分的牛乳(摻水、食鹽、尿素、豆漿及復原乳等)、摻假低價值油(大豆油、玉米油等)的橄欖油、摻假的高價值米、蜂蜜、紅酒等進行檢測,結合統計學
核磁共振
發現病變 核磁共振成像是一種利用核磁共振原理的最新醫學影像新技術,對腦、甲狀腺、肝、膽、脾、腎、胰、腎上腺、子宮、卵巢、前列腺等實質器官以及心臟和大血管有絕佳的診斷功能。與其他輔助檢查手段相比,核磁共振具有成像參數多、掃描速度快、組織分辨率高和圖像更清晰等優點,可幫助醫生“看見”不易察覺的早期
核磁共振波譜儀核磁共振譜儀定義
核磁共振(nuclear magnetic resonance, NMR)是磁矩不為零的原子核,在外磁場作用自旋能級發生蔡曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。并不是是所有原子核都能產生這種現象,原子核能產生核磁共振現象是因為具有核自旋。原子核自旋產生磁矩,當核磁矩處于靜止外磁場中時產生進
核磁共振概述
1945年Bloch和Purcell分別領導兩個小組同時獨立地觀察到核磁共振(Nuclear Magnetic Resonance, NMR),他們二人因此榮獲1952年諾貝爾物理獎。1991年諾貝爾化學獎授予R.R. Ernst教授,以表彰他對二維核磁共振理論及傅里葉變換核磁共振的貢獻。這兩次諾貝
核磁共振現象
(一)核有磁性 1.核由質子和中子組成 2.質子帶正電,中子不帶電 3.所以,原子核帶正電的 4.另外,有些核具有內秉角動量(自旋) 5.奇數核子 6.奇數原子序數,偶數核子 因而核有磁性 磁矩 描述磁場強度與方向的矢量 自旋角動量 旋磁比,每個核都有一特定的值。有正有負,核
核磁共振應用
發現病變核磁共振成像是一種利用核磁共振原理的最新醫學影像新技術,對腦、甲狀腺、肝、膽、脾、腎、胰、腎上腺、子宮、卵巢、前列腺等實質器官以及心臟和大血管有絕佳的診斷功能。與其他輔助檢查手段相比,核磁共振具有成像參數多、掃描速度快、組織分辨率高和圖像更清晰等優點,可幫助醫生“看見”不易察覺的早期病變,已
核磁共振原理
1.原子核的自旋 圖 核磁共振原理圖核磁共振主要是由原子核的自旋運動引起的。不同的原子 核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況:I為零的原子核 可以看作是一種非自旋的球體;I為1/2的原子核可以看作是一種電荷分
核磁共振NMR
NMR(Nuclear Magnetic Resonance)為核磁共振。是磁矩不為零的原子核,在外磁場作用下自旋能級發生蔡曼分裂,共振吸收某一定頻率的射頻輻射的物理過程。核磁共振波譜學是光譜學的一個分支,其共振頻率在射頻波段,相應的躍遷是核自旋在核蔡曼能級上的躍遷。基本原理自旋量子數I不為零的核與
核磁共振波譜儀核磁共振的發生及過程
1.原子核在磁場中的能級分裂質子有自旋,是微觀磁矩,磁矩的方向與旋轉軸重合。在磁場中,這種微觀磁矩的兩種自旋態的取向不同,能量不再相等,磁矩與磁場同向平行的自旋態能級低于磁矩與磁場反向平行的自旋態,兩種自旋態間的能量差△E與磁場強度H0成正比:?式中,h為普朗克常數;H0為磁場的磁場強度,單位為T(
核磁共振波譜儀核磁共振譜儀發展現狀
二十世紀后半葉,NMR技術和儀器發展十分快速,從永磁到超導,從60MHz到800MHz的NMR譜儀磁體的磁場差不多每五年提高一點五倍,這是被NMR在有機結構分析和醫療診斷上特有功能所促進的。現在有機化學研究中NMR已經成為分析常規測試手段,同樣,在醫療上MRI(核磁共振成像儀器)亦成為某些疾病的診斷
核磁共振現象介紹
原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。μ=γP式中,P是角動量矩,γ是磁旋比,它是自旋核的磁矩和角動量矩之間的比值,因此是各種核的特征常數。當自旋核(spin nuclear)處于磁感應強度為B0的外磁場中時,除自旋外,還會繞B0運動,這種
核磁共振的原理
NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a
核磁共振是什么
核磁共振是一種物理現象,作為一種分析手段廣泛應用于物理、化學生物等領域。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MRI),核磁共振CT。MRI是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激后產生信號,用探測器檢測并輸入計算機,經過處理轉換在屏幕上顯
核磁共振的原理
核磁共振用NMR(Nuclear Magnetic Resonance)為代號。1.原子核的自旋核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,見表8-1。I為零的原子
核磁共振(NMR)原理
以氫核為例,由于帶電核的旋轉,會產生一個微小的磁場,一般而言,自旋雜亂無章,但若將其置于較強磁場中,其必定沿著磁場的方向重新排列,當核的自旋軸偏離了外加磁場的方向時,核自旋產生的磁場即會與外磁場相互作用,使原子核除了自旋之外,還會沿著圓錐形的側面圍繞原來的軸擺動,(類似于陀螺的擺動),這種運動方式稱
什么是核磁共振
磁共振magneticresonance(MRI);固體在恒定磁場和高頻交變電磁場的共同作用下,在某一頻率附近產生對高頻電磁場的共振吸收現象。在恒定外磁場作用下固體發生磁化,固體中的元磁矩均要繞外磁場進動。由于存在阻尼,這種進動很快衰減掉。但若在垂直于外磁場的方向上加一高頻電磁場,當其頻率與進動頻率
什么是核磁共振
核磁共振(MRI)又叫核磁共振成像技術,是繼CT 后醫學影像學的又一重大進步。自20 世紀80 年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置于特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,并吸收能量。在停止射頻脈沖后,氫原子核按特定頻率發出射電信號,并將吸收的能
核磁共振波譜方法
? 一種現代儀器分析法。在外加磁場B中,自旋量子數為I的核自旋可以有2I+1個不同的取向。例如1H,13C,19F,31P(I均為1/2),則有2個不同的取向。這是由于帶正電荷的核自旋所產生的磁場,可以有與外磁場B相同的取向(具有位能E1),也可能相反(位能E2),在常態下,當E2>E1時,處于E1
核磁共振(NMR)實驗
核磁共振(Nuclear Magnetic Resonance),是指具有磁矩的原子核在靜磁場中,受電磁波(通常為射頻電磁振蕩波RF)激發,而產生的共振躍遷現象。1945年12月,美國哈佛大學珀塞爾(E. M. Purcell)等人,首先觀察到石臘樣品中質子(即氫原子核)的核磁共振吸收信號。1946
核磁共振的原理
NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a
核磁共振的原理
原子核的自旋。核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系。原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。當自旋核(spin nucle
核磁共振的原理
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可 以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,如下表。分類質量數原子序數自旋量子數INMR信號I偶數偶數0無II偶數奇數1,2,3,…(I為整數)有III奇數奇數或
核磁共振的原理
核磁共振,全稱“核磁共振成像(MRI)”。是一種醫學影像診斷技術,亦稱“核磁共振成像術”。利用人體組織中某種原子核的核磁共振現象,將所得射頻信號經過電子計算機處理,重建出人體某一層面的圖像,并據此作出診斷。 1924年W.泡利為了解釋原子光譜的某些結構,提出原子核具有角動量(即自旋)的假說。194
核磁共振波譜儀核磁共振譜儀基本原理
1)?原子核的基本屬性a.原子核的質量和所帶電荷 ——是原子核的最基本屬性。b.原子核的自旋和自旋角動量 ——量子力學中用自旋量子數I描述原子核的運動狀態。原子核的自旋運動具有一定的自旋角動量;其自旋角動量也是量子化的,它與自旋量子數 I 間的關系為:各種核的自旋量子數質量數A原子序數Z自旋量子數I
核磁共振譜儀核磁共振譜儀的組成部分
通常是用電磁鐵和永久磁鐵產生均勻而穩定的磁場B。在兩磁極之間安裝一個探頭,探頭中央插入試樣管。試樣管在壓縮空氣的推動下,勻速而平穩地回旋。射頻振蕩器線圈安裝在探頭中,產生一定頻率的射頻輻射以激發核。它所產生的射頻場必須與磁場方向垂直。射頻接收線圈也安裝在探頭中,以來探測核磁共振時的吸收信號。另有一組