三角測距激光雷達原理
三角法的原理如下圖所示,激光器發射激光,在照射到物體后,反射光由線性CCD 接收,由于激光器和探測器間隔了一段距離,所以依照光學路徑,不同距離的物體將會成像在CCD 上不同的位置。按照三角公式進行計算,就能推導出被測物體的距離。CCD是Charge Coupled Device(電荷耦合器件)的縮寫,它是一種半導體成像器件。CCD廣泛應用在數碼攝影、天文學,尤其是光學遙測技術、光學與頻譜望遠鏡和高速攝影技術,如Luckyimaging。CCD在攝像機、數碼相機和掃描儀中應用廣泛,只不過攝像機中使用的是點陣CCD,即包括x、y兩個方向用于攝取平面圖像,而掃描儀中使用的是線性CCD,它只有x一個方向,y方向掃描由掃描儀的機械裝置來完成TOF激光雷達原理激光器發射一個激光脈沖,并由計時器記錄下出射的時間,回返光經接收器接收,并由計時器記錄下回返的時間。兩個時間相減即得到了光的“飛行時間”,而光速是一定的,因此在已知速度和時間后很容易就......閱讀全文
視覺導航-vs-激光導航,掃地機器人SLAM技術解析
如今掃地機器人越來越受歡迎,已經成為一類“新興小家電”。為了效率更高、更節能地實現清掃全屋的功能,繪制室內地圖以及確定自身位置是必不可少的功能,許多早期掃地機器人產品并沒有配備導航系統,只能按照設定的路線進行清掃,碰到墻壁或物體邊緣便轉向,導致清掃線路雜亂無章、效率低下。近年來不少中高端掃地
激光測距傳感器的原理及應用(一)
激光測距傳感器是先由激光二極管對準目標發射激光脈沖,經目標反射后激光向各方向散射。部分散射光返回到傳感器接收器,被光學系統接收后成像到雪崩光電二極管上。雪崩光電二極管是一種內部具有放大功能的光學傳感器,因此它能檢測極其微弱的光信號。記錄并處理從光脈沖發出到返回被接收所經歷的時間,即可測定目標
激光測距傳感器的原理及應用(二)
如今,激光雷達系統有2個主要發展方向,紅外激光雷達系統加上微電機械系統(MEMS Micro-Electro-Mechanical System)(配上轉動的激光發射器),或者采用固定狀態的激光雷達系統。在簡要地討論這些技術的區別以前,需要對接收系統解釋一下。接收系統的主要功能是識別從發射器
激光測距傳感器的原理及應用剖析
激光測距傳感器是先由激光二極管對準目標發射激光脈沖,經目標反射后激光向各方向散射。部分散射光返回到傳感器接收器,被光學系統接收后成像到雪崩光電二極管上。雪崩光電二極管是一種內部具有放大功能的光學傳感器,因此它能檢測極其微弱的光信號。記錄并處理從光脈沖發出到返回被接收所經歷的時間,即可測定目標
輕巧的激光測距測試儀的工作原理
本激光測距儀是通過瞄準物體后發射不可見、對人眼無害的一種紅外脈沖再通過持續不斷的測算脈沖來回的時間從而計算出目標的準確距離。激光測量距離主要取決與目標物體的反射程度,一般交通標示牌效果比較好。因為目標的顏色、表面處理程度、大小、目標的形狀的將會直接影響物體的反射率從而影響測距的距離。本產品除了采
相位式激光測距儀的原理和應用
相位式激光測距儀是利用激光束進行幅度調制并測定調制光往返測線一次所產生的相位延遲,再根據調制光的波長,換算此相位延遲所代表的距離。即用間接方法測定出光經往返測線所需的時間。相位式激光測距儀一般應用在精密測距中。由于其精度高,一般為毫米級,為了有效的反射信號,并使測定的目標限制在與儀器精度相稱的某一特
單光子激光雷達與線性固態激光雷達
上圖是豐田于 2013 年開發的基于 SiSPAD (硅單光子)的激光雷達原型。水平角分辨率高達 0.05 度,水平 FOV 為 170 度,垂直 FOV 較差,僅為 4.5 度。采用了少見了 870 納米激光,脈沖帶寬為 4 納秒,每秒高達 8 億 TOF,云點數為 326400,云點密度大約是
固態激光雷達和機械激光雷達的區別
機械激光雷達帶有控制激光發射角度的旋轉部件,而固態激光雷達則無需機械旋轉部件,主要依靠電子部件來控制激光發射角度。機械激光雷達主要由光電二極管、MEMS反射鏡、激光發射接受裝置等組成,其中機械旋轉部件是指可360°控制激光發射角度的MEMS發射鏡。固態激光雷達通過光學相控陣列、光子集成電路以及遠場輻
激光雷達系統的基本原理
基本原理LIDAR是一種集激光,全球定位系統(GPS)和慣性導航系統(INS)三種技術與一身的系統,用于獲得數據并生成精確的DEM。這三種技術的結合,可以高度準確地定位激光束打在物體上的光斑。它又分為目前日臻成熟的用于獲得地面數字高程模型(DEM)的地形LIDAR系統和已經成熟應用的用于獲得水下DE
激光測距的技術分類
1.手持激光測距儀測量距離一般在200米內,精度在2mm左右。這是使用范圍最廣的激光測距儀。在功能上除能測量距離外,一般還能計算測量物體的體積。2. 望遠鏡式激光測距儀測量距離一般在600-3000米左右,這類測距儀測量距離比較遠,但精度相對較低,精度一般在1米左右。主要應用范圍為野外長距離測量。3
激光測云儀的測距過程
測距的整個過程是:用瞄準望遠鏡瞄準被測的目標,啟動電源,當激光器發出單個脈沖激光后,其中一小部分激光從導光器到光電轉換系統,把光脈沖變成電脈沖,并加以放大,此電脈沖到計數顯示系統打開“電子表”,而激光器發出單個脈沖激光的大部分能量由發射望遠鏡發射出去,到達目標后,被反射回一小部分,由接收望遠鏡接收到
激光測距儀介紹
一、產品介紹? ? ? 礦用本安型激光測距儀具有精度自助校準、最大值/最小值測量,連續測量、面積/體積測量、三角形/勾股定理測量、加減測量、角度測量、放樣/延遲測量、傾角測量等功能。儀器外殼采用ABS工程塑料,按鍵部分采用雙注塑防滑軟膠,符合人體工學。儀器可存儲數據,最遠達50米的jingq
激光掃描測距儀的激光掃描器測量原理介紹
激光掃描測距儀激光掃描器測量原理:激光發射器發出激光脈沖波,當激光波碰到物體后,部分能量返回,當激光接收器收到返回激光波時,且返回波的能量足以觸發門檻值,激光掃描器計算它到物體的距離值; 激光掃描器連續不停的發射激光脈沖波,激光脈沖波打在高速旋轉的鏡面上,將激光脈沖波發射向各個方向從而形成一個二
激光雷達回波
激光雷達(激光探測及測距)是一項光學遙感技術,它利用激光對地球表面進行密集采樣,以產生高精度的 x,y,z 測量值。激光雷達主要用于機載激光制圖應用程序中,正日益成為替代傳統測量技術(如攝影測量)的具有成本效益的新技術。激光雷達能生成可通過 ArcGIS 進行管理、顯示、分析以及共享的離散多點云數據
脈沖式和相位式激光測距
激光測距設備對反射性物體類如地表,建筑物或者是樹木等,進行斜距測量的過程中使用的測距方式無非是相位式或者是脈沖式。脈沖式又稱TOF式或者是脈沖回波式,相位式又稱相位比對式或者是相位偏移式。脈沖式大多應用于測量數十數百米的距離測量當中,主要應用于機載平臺的激光雷達設備,從數百米到數公里不等的距離上,脈
機載海洋激光雷達和自動駕駛激光雷達
傳統的水中目標探測裝置是聲納。根據聲波的發射和接收方式,聲納可分為主動式和被動式,可對水中目標進行警戒、搜索、定性和跟蹤。但它體積很大,重量一般在600公斤以上,有的甚至達幾十噸重。而激光雷達是利用機載藍綠激光器發射和接收設備,通過發射大功率窄脈沖激光,探測海面下目標并進行分類,既簡便,精度又高。迄
激光測距儀的技術原理都有哪些呢?
激光測距儀的技術原理都有哪些呢? 脈沖法激光測距技術原理: 相位法與超聲波測速測距所用方法相類似,*大測量距離通常為幾百米,能較容易達到毫米的數量級,但是按照該方法設計的測距儀的*大測量距離是受到限制的,不可擴展。該方法主要在國外應用較廣。而脈沖法激光測距一般采用紅外激光,包括近紅外
關于激光測距儀的基本原理介紹
1.利用紅外線測距或激光測距的原理 測距原理基本可以歸結為測量光往返目標所需要時間,然后通過光速c =299792458m/s 和大氣折射系數n 計算出距離D。由于直接測量時間比較困難,通常是測定連續波的相位,稱為測相式測距儀。當然,也有脈沖式測距儀。 需要注意,測相并不是測量紅外或者激光的
簡述手持式激光測距儀的工作原理
若激光是連續發射的,測程可達40公里左右,襯氟蝶閥并可晝夜進行作業。若激光是脈沖發射的,一般絕對精度較低,但用于遠距離量,可以達到很好的相對精度。世界上第一臺激光器,是由美國休斯飛機公司的科學家梅曼于1960年,首先研制成功的。美國軍方很快就在此基礎上開展了對軍用激光裝置的研究。1961年,第一
自動駕駛激光雷達原理解析(二)
2.硅谷新銳Quanergy 2014年9月,Quanergy和奔馳達成戰略合作,為奔馳研發車內傳感系統和無人車。而事實上,這家年輕的公司2012年才在硅谷成立。2014年10月,該公司獲得了3000萬美元的A輪融資。2015年10月,Quanergy公司宣布與Delphi公司合作,為
激光雷達的原理、應用現狀及其發展
激光雷達是一種可以精確、快速獲取地面或大氣三維空間信息的主動探測技術,應用范圍和發展前景十分廣闊。以往的傳感器只能獲取目標的空間平面信息,需要通過同軌、異軌重疊成像等技術來獲取三維高程信息,這些方法與LiDAR技術相比,不但測距精度低,數據處理也比較復雜。正因為如此,LiDAR技術與成像光譜、合成孔
自動駕駛激光雷達原理解析(一)
最近頻頻“出事”的特斯拉讓不少人對自動駕駛產生了顧慮,這其中到底有哪些技術尚不成熟,解法又是什么?相信是許多人心中的疑問。 事實上,對于自動駕駛,也許你的理解還有些誤會。智能內參曾經分享過波士頓咨詢的一篇自動駕駛報告,非常詳細的解釋了自動駕駛的狀態是分層級的,0級全部需要人來操作,5及
激光傳感器的原理和應用
激光技術和激光器是二十世紀六十年代出現的最重大的科學技術之一。激光技術與應用的迅猛發展,已與多個學科相結合,形成新興的交叉學科,如光電子學、信息光學、激光光譜學、非線性光學、超快激光學、量子光學、光纖光學、導波光學、激光醫學、激光生物學、激光化學等。這些交叉技術與新的學科的出現,使得激光器的應用范圍
激光雷達是什么?一文帶你讀懂激光雷達
隨著人工智能的發展 ,激光雷達也獲得了廣泛的關注,在機器人領域,激光雷達可以幫助機器人在未知環境中了解周邊地圖信息,為后續定位導航提供很好的環境認知能力,幫助機器人實現智能行走。什么是激光雷達?激光雷達是一種用于獲取精確位置信息的傳感器,猶如人類的眼睛,可以確定物體的位置、大小等,由發射系統、接收系
激光測距儀的簡介
激光測距儀是利用調制激光的某個參數對目標的距離進行準確測定的儀器。脈沖式激光測距儀是在工作時向目標射出一束或一序列短暫的脈沖激光束,由光電元件接收目標反射的激光束,計時器測定激光束從發射到接收的時間,計算出從測距儀到目標的距離。 當發射的激光束功率足夠時,測程可達40公里左右甚至更遠,激光測距
激光測距的方式和應用
激光測距(laser distance measuring)是以激光器作為光源進行測距。根據激光工作的方式分為連續激光器和脈沖激光器。氦氖、氬離子、氪鎘等氣體激光器工作于連續輸出狀態,用于相位式激光測距;雙異質砷化鎵半導體激光器,用于紅外測距;紅寶石、釹玻璃等固體激光器,用于脈沖式激光測距。激光測距
激光測距儀的分類
激光測距儀分手持激光測距儀和望遠鏡式激光測距儀。1、手持激光測距儀:測量距離一般在200米內,精度在2mm左右。這是目前使用范圍最廣的激光測距儀。在功能上除能測量距離外,一般還能計算測量物體的體積。2、云服務激光測距儀:通過藍牙將激光測距儀上測量數據實時傳輸到移動終端如手機、平板電腦上;通過wifi
激光測距儀的應用
將安裝在抓斗式卸船機的駕駛室下方,激光器垂直向下進行掃描。系統就緒以后,由控制系統發出啟動命令。激光器高速發出短促激光脈沖,對下方區域以極小的角度分辨率逐點進行測量。大量的測量數據點被軟件采集后,被轉化為三維空間內的點云數據,再通過特殊的數據處理算法,將激光器采集的數據轉換為物料的位置和輪廓信息。將
激光測距的方式及特點
激光測距(laser distance measuring)是以激光器作為光源進行測距。根據激光工作的方式分為連續激光器和脈沖激光器。氦氖、氬離子、氪鎘等氣體激光器工作于連續輸出狀態,用于相位式激光測距;雙異質砷化鎵半導體激光器,用于紅外測距;紅寶石、釹玻璃等固體激光器,用于脈沖式激光測距。激光測距
激光測距的工作方法
通常精密測距需要全反射棱鏡配合,而房屋量測用的測距儀,直接以光滑的墻面反射測量,主要是因為距離比較近,光反射回來的信號強度夠大。與此可以知道,一定要垂直,否則返回信號過于微弱將無法得到精確距離。通常也是可以的,實際工程中會采用薄塑料板作為反射面以解決漫反射嚴重的問題。激光測距儀精度可達到1毫米誤差,