關于基因轉錄的基本介紹
基因轉錄是在細胞核和細胞質內進行的。它是指以DNA的一條鏈為模板,按照堿基互補配對原則,在RNA聚合酶作用下合成RNA的過程。基因轉錄有正調控和負調控之分。 如細菌基因的負調控機制是當一種阻遏蛋白(repressor protein)結合在受調控的基因上時,基因不表達;而從靶基因上去除阻遏蛋白后,RNA聚合酶識別受調控基因的啟動子,使基因得以表達,這是正調控。這種阻遏蛋白是反式作用因子。......閱讀全文
基因表達的轉錄機制介紹
轉錄過程由RNA聚合酶(RNAP)進行,以DNA為模板,產物為RNA。RNA聚合酶沿著一段DNA移動,留下新合成的RNA鏈。 基因組DNA由兩條反向平行和反向互補鏈組成,每條鏈具有5'和3'末端。這兩條鏈分別稱為“模板鏈”(產生RNA轉錄物的模板)和“編碼鏈”(含有轉錄本序列的
基因轉錄因子的相關介紹
轉錄因子(transcription factor)是起調控作用的反式作用因子。轉錄因子是轉錄起始過程中RNA聚合酶所需的輔助因子。真核生物基因在無轉錄因子時處于不表達狀態,RNA聚合酶自身無法啟動基因轉錄,只有當轉錄因子(蛋白質)結合在其識別的DNA序列上后,基因才開始表達。轉錄因子的結合位點
關于逆轉錄酶的基本信息介紹
反轉錄酶(reverse transcriptase,也可寫成逆轉錄酶) 又稱為依賴RNA 的DNA 聚合酶。1970 年Temin 等在致癌RNA 病毒中發現了一種特殊的DNA 聚合酶,該酶以RNA 為模板,以dNTP 為底物,tRNA( 主要是色氨酸tRNA) 為引物,在tRNA 3'-OH
關于反轉錄轉座子的基本信息介紹
反轉座作用出現在真核生物,包括能自由地感染宿主細胞的反轉錄病毒,以及通過以RNA為中介進行轉座的DNA序列。除反轉錄病毒外,反轉錄轉座子可以分成兩類:一類是病毒超家族(viral superfamily),這類反轉錄轉座子編碼反轉錄酶或整合酶(integrases),能自主地進行轉錄,其轉座的機
關于轉錄的特點介紹
轉錄時,細胞通過堿基互補的原則來生成一條帶有互補堿基的mRNA,通過它攜帶密碼子到核糖體中可以實現蛋白質的合成。與DNA的復制相比,轉錄有很多相同或相似之處,亦有其自己的特點。 轉錄中,一個基因會被讀取并復制為mRNA。就是說,以特定的DNA片段作為模板,以DNA依賴的RNA聚合酶作為催化劑,
關于逆轉錄病毒介導的基因技術的介紹
是目前將外源基因導入細胞的最有效的方法。此系統包括重組逆轉錄病毒載體和包裝細胞兩個部分,廣泛應用的逆病毒載體LNL6是以Moloney鼠白血病病毒(MO-MLV)改建的。該病毒為RNA病毒,感染細胞后,其基因組RNA經逆轉產生雙鏈DNA拷貝插入宿主染色體形成前病毒,前病毒轉錄產生正鏈即為病毒基因
基因表達的轉錄調控的介紹
可分為三種主要途徑: 1)遺傳調控(轉錄因子與靶標基因的直接相互作用); 2)調控轉錄因子與轉錄機制相互作用; 3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。 通過轉錄因子直接調控靶標DNA表達是最簡單和最直接的轉錄調控改變轉錄水平的方法。基因的編碼區周圍通常都具有幾個蛋白質結合
概述轉錄后基因沉默的基本內容
PTGS在多種生物中有共性,對PTGS的激活和與其相關的RNA降解調控過程有了初步的認識。也發現植物病毒在轉基因植物和非轉基因植物中都能和轉基因一樣誘發轉錄后基因沉默。令人吃驚的是,轉基因植物的共抑制現象(轉基因與同源的內源基因一起失活)、轉基因植物的病毒抗性和非轉基因植物對病毒正常自然侵染的抗
關于病毒癌基因的基本介紹
病毒癌基因(viral oncogene):是存在于致癌DNA病毒和一部分逆轉錄病毒基因組中能使靶細胞發生惡性轉化的基因。它不編碼病毒結構成分,對病毒無復制作用,但是當受到外界的條件激活時可產生誘導腫瘤發生的作用。
關于基因庫的基本介紹
基因庫(gene pool)是一個群體中所有個體的全部基因的總和。有性生殖支撐了一種獨特的基因庫構建與運行模式,減數分裂通過修修補補、程序性突變(如復制錯誤、缺失、插入、重復等,這些與輻射誘變等比較,相對溫和)等增加種群內基因的多樣性以及等位基因的多態性,并分散保存于種群之中(種群規模越大,容納
關于加工假基因的基本介紹
有一類假基因除了一般的特征之外,還有一些其他的特征暗示著它們的形成與mRNA有關: ①在假基因中完全缺少在相應的正常基因中存在的內含子順序; ②在假基因的3'末端有一段連貫的脫氧腺嘌呤核苷酸; ③有些假基因與相應的正常基因在順序組成上的相似性只限于相應的mRNA的3'末端之
關于等位基因的基本介紹
位于一對同源染色體的相同位置上控制某一性狀的不同形態的基因。不同的等位基因產生例如發色或血型等遺傳特征的變化。等位基因控制相對性狀的顯隱性關系及遺傳效應,可將等位基因區分為不同的類別。在個體中,等位基因的某個形式(顯性的)可以比其他形式(隱性的)表達得多。等位基因(gene)是同一基因的另外“版
關于基因的基本信息介紹
基因(遺傳因子)是產生一條多肽鏈或功能RNA所需的全部核苷酸序列。基因支持著生命的基本構造和性能。儲存著生命的種族、血型、孕育、生長、凋亡等過程的全部信息。環境和遺傳的互相依賴,演繹著生命的繁衍、細胞分裂和蛋白質合成等重要生理過程。生物體的生、長、衰、病、老、死等一切生命現象都與基因有關。它也是
關于細胞癌基因的基本介紹
存在于正常的細胞基因組中,與病毒癌基因有同源序列,具有促進正常細胞生長、增殖、分化和發育等生理功能。 細胞癌基因:存在于正常的細胞基因組中,與病毒癌基因有同源序列,具有促進正常細胞生長、增殖、分化和發育等生理功能。在正常細胞內未激活的細胞癌基因叫原癌基因,當其受到某些條件激活時,結構和表達發生
關于外源基因的基本介紹
將外源基因導入生物體的過程稱為轉化。這可以自然發生,也可以人為發生。人工轉化轉染方法包括:(a)化學方法,有磷酸鈣沉淀法、DEAE -葡聚糖絡合和脂質介導的DNA轉化法;(b)物理方法,包括電穿孔、微注射和基因槍法;(c)重組法,比如利用病毒作為載體。 細菌、植物和動物的基因轉化具有重要的研究
關于調節基因的基本作用介紹
控制另一些遠離基因的產物合成速率的基因。能控制阻礙物的合成,后者能抑制操縱基因的作用,從而停止它所控制的操縱子中的結構基因的轉錄。這種基因,主要的功能是產生一類抑制物,以制約其他基因的活動。也就是,一段有效的DNA片段,它可轉錄翻譯而產生調節蛋白,該蛋白質與操縱基因相互作用,而對操縱子的活動進行
關于基因重組疫苗的基本介紹
發生在生物體內基因的交換或重新組合。包括同源重組、位點特異重組、轉座作用和異常重組四大類。是生物遺傳變異的一種機制。 指整段DNA在細胞內或細胞間,甚至在不同物種之間進行交換,并能在新的位置上復制、轉錄和翻譯。在進化、繁殖、病毒感染、基因表達以致癌基因激活等過程中,基因重組都起重要作用。基因重
關于基因內重排的基本介紹
一個結果是錯位鏈最末端的堿基率先復性,然后局部合成空缺的堿基,經過修復形成一個或幾個插入重復單位。因為是發生在同 -DNA分子內的單鏈插入,故這種基因的轉移是一種基因內轉換形式。基因內轉換重排可以反復出現,每出現一次就增加一段插入序列,所以這種錯位復性及修復方式在小衛星座位一般都是增加了重復單位
關于免疫應答基因的基本介紹
為支配免疫反應性的基因的總稱。廣義的也包括免疫球蛋白基因,但一般指在它之外的基因。最重要的是指在主要組織相容性抗原基因復合體(MHC)內存在的Ir基因(Ir genes)。表達lr gene的方式多種多樣,支配阻遏細胞和輔助細胞(helper cell)機能的表達或由巨噬細胞向T細胞提供抗原。在
關于旁系同源基因的基本介紹
旁系同源基因(paralogous gene)又譯為“橫向同源基因”、“并系同源基因”或“平行進化同源基因”,是指由于基因復制而產生的同源基因,例如人γ一珠蛋白基因和β一珠蛋白基因。基因復制后,進化選擇壓力變小,其中一條基因丟失或發生沉默,都能促使旁系同源基因分化,產生新特性或新功能的原因。然而
關于基因缺失疫苗的基本介紹
(gene defect vaccine) 是用基因工程技術將強毒株毒力相關基因切除構建的活疫苗,該苗安全性好、不易返祖;其免疫接種與強毒感染相似,機體可對病毒的多種抗原產生免疫應答;免疫力堅強,免疫期長,尤其是適于局部接種,誘導產生黏膜免疫力,因而是較理想的疫苗。以有多種基因缺失疫苗問世,例如
關于單體型基因的基本介紹
單體型(Haplotype,haploid genotype)是個體組織中,完全遺傳自父母雙方中一個親本的一組等位基因,又稱單倍體型或單元型。例如:三對雙等位基因的單體型共有8種。系統的研究表明一擁有特定SNP的個體常常在附近某一特定變異位點擁有特定等位基因,這種關系叫做連鎖不平衡(linkag
關于珠蛋白基因的基本介紹
α鏈基因和β鏈基因的內含子1的長度約為120個堿基對,而對內含子2,β鏈很長(例如人的α鏈基因之一的α2,內含子2含140個堿基對,而β鏈基因含849個堿基對)。珠蛋白基因在哺乳類是數次重復的結構,形成一種多重基因群。例如人的擬β鏈珠蛋白基因(β-like globin genes)在整個650
關于逆轉錄酶抑制劑的基本介紹
獲得性免疫缺陷綜合征(艾滋病,AIDS)是由人免疫缺陷病毒(HIV)引起的嚴重傳染性疾病。HIV是一種逆轉錄病毒,其逆轉錄過程就是在病毒逆轉錄酶的作用下,以病毒RNA為模板合成前病毒DNA的過程。病毒逆轉錄酶在病毒生命周期中的獨特功能使其成為抗病毒治療的重要靶點 。逆轉錄酶抑制劑能夠特異性作用于
轉錄因子的基本信息介紹
RNA的轉錄合成從化學角度來講類似于DNA的復制,多核苷酸鏈的合成都是以5’→3’的方向,在3’-OH末端與加入的核苷酸形成磷酸二酯鍵,但是,由于復制和轉錄的目的不同,轉錄又具有其特點: (1)對于一個基因組來說,轉錄只發生在一部分基因,而且每個基因的轉錄都受到相對獨立的控制; (2)轉錄是
轉錄酶的基本分類介紹
通常可根據生物的類別,將RNA聚合酶分為原核生物RNA聚合酶、真核生物RNA聚合酶。 原核生物和真核生物的RNA聚合酶有共同特點,但在結構、組成和性質等方面又不盡相同。 (1)原核生物RNA聚合酶 研究得最清楚的是大腸桿菌RNA聚合酶。該酶是由五種亞基組成的六聚體(α2ββ'ωσ)分
關于基因識別的基本介紹
由于人類基因具有唯一性(同卵雙胞胎除外),目前法醫學上用途最廣的方面就是個體識別和親子鑒定。 在法醫學上,STR位點和單核苷酸(SNP)位點檢測分別是第二代、第三代DNA分析技術的核心,是繼RFLPs(限制性片段長度多態性)、VNTRs(可變數量串聯重復序列多態性)研究而發展起來的檢測技術。作
關于轉錄酶的特點介紹
RNA聚合酶催化RNA的合成,其與DNA聚合酶有許多相同的催化特點: ①以DNA為模板; ②催化核苷酸通過聚合反應合成核酸; ③聚合反應是核苷酸形成3’,5’一磷酸二酯鍵的反應; ④以3’→5’方向閱讀模板,5’→3’方向合成核酸; ⑤按照堿基配對原則忠實轉錄模板序列。
關于轉錄的調節控制介紹
轉錄的調節控制是基因表達調節控制中的一個重要環節。促進基因轉錄叫正調節,抑制基因轉錄叫負調節。 在原核生物方面1961年F.雅各布和J.莫諾提出的操縱子學說,得到許多人的驗證和充實。操縱子通常的調控方式為: ①誘導和阻遏作用; ②環腺苷酸(CAMP)和降解物活化蛋白(CAP)的調節作用;
關于DNA解旋酶轉錄的介紹
1、 不需要: DNA復制需要解旋酶,可是與DNA復制相類似的轉錄過程并不需要解旋酶,基因的轉錄是由RNA聚合酶催化進行的。基因的上游具有結合RNA聚合酶的區域,叫做啟動子。啟動子是一段具有特定序列的DNA,具有和RNA聚合酶特異性結合的位點,決定了基因轉錄的起始位點。RNA聚合酶與啟動子結合后