• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 關于多線染色體的基因表達

    在個體發育的某個階段或某些化學物質的誘發下,多線染色體的某些帶紋變得疏松膨大而形成脹泡。最大的脹泡叫做巴爾比安尼氏環。脹泡是基因轉錄和翻譯的形態學標志,在這里DNA解旋呈開放環,RNA的合成很活躍;核糖體排列成多聚核糖體長鏈,多肽鏈的長度有一個梯度,甚至還可觀察到從巴爾比安尼環上新合成的蛋白質分泌顆粒。 在一種搖蚊 (C.pallidivittatus)唾腺前葉細胞的染色體4上,近著絲點處有巴爾比安尼環4,這些細胞能分泌特異的蛋白質顆粒。然而,在另一種搖蚊(C.tentanus)中則沒有巴爾比安尼環4,也沒有這種分泌顆粒。這兩種動物的雜交試驗表明,編碼分泌顆粒蛋白質的結構基因位于染色體4的巴爾比安尼環4上。 在尖眼蕈蚊 (Sciara coprophila)等動物還發現有一種非常特殊的脹泡──DNA脹泡。3H-胸腺嘧啶核苷和3H-尿嘧啶核苷能摻入這種脹泡。它們是額外的DNA復制區域(圖3),其轉錄活性和5-甲基胞嘧啶含量......閱讀全文

    關于多線染色體的基因表達

      在個體發育的某個階段或某些化學物質的誘發下,多線染色體的某些帶紋變得疏松膨大而形成脹泡。最大的脹泡叫做巴爾比安尼氏環。脹泡是基因轉錄和翻譯的形態學標志,在這里DNA解旋呈開放環,RNA的合成很活躍;核糖體排列成多聚核糖體長鏈,多肽鏈的長度有一個梯度,甚至還可觀察到從巴爾比安尼環上新合成的蛋白質分

    關于多線染色體的發現介紹

      1881年E.G.巴爾比安尼首先在雙翅目搖蚊(Chironomus)幼蟲的唾腺細胞中觀察到多線染色體,但未引起注意。1933年在遺傳學成就的影響下T.S.佩因特在果蠅唾腺,E.海茨和H.鮑爾等在毛蚊屬(Bibio)再次看到這種染色體后,人們才予重視。此后在昆蟲的多種組織如腸、氣管、脂肪體細胞和馬

    多線染色體的定義

    多線染色體(polytene chromosome)是一種纜狀的巨大染色體,見于某些生物生命周期的某些階段里的某些細胞中。由核內有絲分裂產生的多股染色單體平行排列而成。

    多線染色體的形態

    各染色單體上的染色粒(見燈刷染色體)并行排列,構成多線染色體的帶,帶與帶之間則稱為間帶。多線染色體的這種結構可用光學顯微鏡觀察,也能在多線染色體上用原位分子雜交法進行基因定位,并就其結構與功能之間的關系進行系統研究,因此是細胞學和遺傳學研究的有用材料。核內DNA多次復制產生的子染色體平行排列,且體細

    多線染色體的激素介紹

      如果在蛋白質合成受到抑制的條件下(例如用放線菌酮等),使唾腺受到激素處理,仍能誘發早期脹泡,但不能誘發晚期脹泡。這說明早期脹泡的形成不需要蛋白質合成,晚期脹泡的形成可能是早期脹泡基因產物作用的后果。早期脹泡的活性始終依賴于蛻皮激素,一旦除去激素后脹泡就萎縮;而晚期脹泡在沒有激素存在時仍能正常地出

    多線染色體的形態介紹

      多線染色體(polytene chromosome)是一種纜狀的巨大染色體,見于某些生物生命周期的某些階段里的某些細胞中。由核內有絲分裂產生的多股染色單體平行排列而成。  各染色單體上的染色粒(見燈刷染色體)并行排列,構成多線染色體的帶,帶與帶之間則稱為間帶。多線染色體的這種結構可用光學顯微鏡觀

    多線染色體的生物特點

    多線染色體不是生長到一定程度就進入有絲分裂,而是不斷生長,繼續復制,而且新的復制體總是沿其全長整齊地與原來的染色體并列著的,因而染色體就生長得極其龐大。例如,在果蠅唾腺細胞中每一個多線染色體都是經過大約9個循環的復制產生的,所以每條多線染色體至少包含了500-1000條單染色體(DNA纖絲),某些昆

    多線染色體的形態結構

    并行排列的染色質纖維多線染色體是DNA多次復制后所產生的子染色體整齊排列,緊密結合在一起而形成的。它所在的細胞在此過程中處于永久間期階段,不分裂,因而隨著復制的不斷進行,核體積不斷增加,多線化細胞的體積也相應增大。同種動物的不同組織以及不同動物的相同組織的多線化程度各不相同。例如搖蚊馬爾皮基氏管細胞

    多線染色體的圖譜的介紹

      把用雜交試驗得到的果蠅多線染色體的遺傳圖譜與正常的帶譜比較,可以看出每條帶相當于一個遺傳單位,并且可以鑒定出許多具有特殊遺傳功能的帶的位置。在特殊情況下,一條帶可能同時有幾個結構基因。例如,用原位雜交法曾經證明5SRNA基因的大部分拷貝位于2R的一條帶(56F)上;組蛋白mRNA只能雜交到2L的

    簡述多線染色體的生物特點

      多線染色體不是生長到一定程度就進入有絲分裂,而是不斷生長,繼續復制,而且新的復制體總是沿其全長整齊地與原來的染色體并列著的,因而染色體就生長得極其龐大。例如,在果蠅唾腺細胞中每一個多線染色體都是經過大約9個循環的復制產生的,所以每條多線染色體至少包含了500-1000條單染色體(DNA纖絲),某

    多線染色體脹泡的定義

    在個體發育的某個階段或某些化學物質的誘發下,多線染色體的某些帶紋變得疏松膨大而形成脹泡。在這里DNA解旋呈開放環,RNA的合成很活躍;核糖體排列成多聚核糖體長鏈,多肽鏈的長度有一個梯度,甚至還可觀察到從巴爾比安尼環上新合成的蛋白質分泌顆粒。

    多線染色體的發現與研究

    1881年E.G.巴爾比安尼首先在雙翅目搖蚊(Chironomus)幼蟲的唾腺細胞中觀察到多線染色體,但未引起注意。1933年在遺傳學成就的影響下T.S.佩因特在果蠅唾腺,E.海茨和H.鮑爾等在毛蚊屬(Bibio)再次看到這種染色體后,人們才予重視。此后在昆蟲的多種組織如腸、氣管、脂肪體細胞和馬爾皮

    多線染色體的脹泡的相關介紹

      在雙翅目昆蟲唾腺的正常發育過程中,脹泡的出現是一種周期性的可逆現象。在一定的時期內,幼蟲的不同組織里會有脹泡的出現、生長和消失過程。運用誘導脹泡形成的一些因子,如將蛻皮激素注射到幼蟲或將它加入培養的唾腺中去則會在多線染色體上誘發出特殊的脹泡,所誘發脹泡的大小與所用激素的量有關。這些脹泡也出現在正

    多藥抗藥基因的表達實驗

    實驗方法原理?大多MDR細胞膜上出現MDR-1基因及其基因產物P-糖蛋白過度表達。實驗材料?RNA試劑、試劑盒?PBS氯仿異丙醇萘酸異硫氰酸肽十二烷基肌酸鈉構櫞酸鈉乙酸鈉二疏基乙醇乙醇Taq酶儀器、耗材?離心機紫外分光光度計瓊脂糖凝膠電泳PCR儀實驗步驟 一、細胞總RNA提取1.? 收集約5×107

    多藥抗藥基因的表達實驗

    PCR擴增法 ? ? ? ? ? ? 實驗方法原理 大多MDR細胞膜上出現MDR-1基因及其基因產物P-糖蛋白過度表達。 多藥抗藥基因的表達實驗是通過反轉錄和PCR的方法來檢測這些特

    多藥抗藥基因的表達實驗

    ?多藥抗藥基因的表達實驗是通過反轉錄和PCR的方法來檢測特定基因的過度表達。一、細胞總RNA提取1. ?收集約5×107個細胞,冷PBS洗滌。2. ?加入400 ul RNA提取液(含6 mol/l 的異硫氰酸肽,0.5%十二烷基肌酸鈉,0.025 mol/l 構櫞酸鈉pH7.0,0.25 mol/

    多線染色體的帶和間帶的介紹

      沿著多線染色體的長軸有一系列深色的帶和透亮的間帶交替排列。帶上的 DNA纖維高度卷曲,DNA 含量高,故能用堿性染料著色,呈孚爾根陽性反應,260納米紫外光吸收強;間帶的DNA含量低,不能用堿性染料著色,呈孚爾根陰性反應,260納米紫外光吸收弱。  各種多線染色體上帶的數目、形態、大小及其分布位

    關于基因表達的介紹

      基因的表達過程是將DNA上的遺傳信息傳遞給mRNA,然后再經過翻譯將其傳遞給蛋白質。在翻譯過程中tRNA負責與特定氨基酸結合,并將它們運送到核糖體,這些氨基酸在那里相互連接形成蛋白質。這一過程由tRNA合成酶介導,一旦出現問題就會生成錯誤的蛋白質,進而造成災難性的后果。值得慶幸的是,tRNA分子

    多線染色體并行排列的染色質纖維介紹

      多線染色體是DNA多次復制后所產生的子染色體整齊排列,緊密結合在一起而形成的。它所在的細胞在此過程中處于永久間期階段,不分裂,因而隨著復制的不斷進行,核體積不斷增加,多線化細胞的體積也相應增大。  同種動物的不同組織以及不同動物的相同組織的多線化程度各不相同。例如搖蚊馬爾皮基氏管細胞的染色體最多

    關于基因表達的概念簡介

      基因表達(gene expression)是指將來自基因的遺傳信息合成功能性基因產物的過程。基因表達產物通常是蛋白質,所有已知的生命,都利用基因表達來合成生命的大分子。  基因表達產物通常是蛋白質,但是非蛋白質編碼基因如轉移RNA(tRNA)或小核RNA(snRNA)基因的表達產物是功能性RNA

    多藥抗藥基因的表達實驗——PCR擴增法

    多藥抗藥基因的表達實驗主要用于腫瘤治療研究。實驗方法原理大多MDR細胞膜上出現MDR-1基因及其基因產物P-糖蛋白過度表達。 多藥抗藥基因的表達實驗是通過反轉錄和PCR的方法來檢測這些特定基因的過度表達。實驗材料RNA試劑、試劑盒PBS氯仿異丙醇萘酸異硫氰酸肽十二烷基肌酸鈉構櫞酸鈉乙酸鈉二疏基乙醇乙

    關于基因表達的折疊的介紹

      剛從mRNA序列翻譯過來的蛋白質都是未折疊或無規卷曲的多肽,沒有任何的三維結構。氨基酸彼此相互作用使得多肽從無規卷曲折疊成其特征性和功能性三維結構。氨基酸序列決定l了蛋白質的三維結構,且正確的三維結構對于功能至關重要,盡管功能蛋白的某些部分可能仍未展開。伴侶蛋白的酶有助于新形成的蛋白質獲得折疊,

    關于基因表達調控的技術簡介

      基因調控是現代分子生物學研究的中心課題之一。因為要了解動植物生長發育規律。形態結構特征及生物學功能,就必須搞清楚基因表達調控的時間和空間概念,掌握了基因調控機制,就等于掌握了一把揭示生物學奧秘的鑰匙。基因表達調控主要表現在以下幾個方面:   ①轉錄水平上的調控;   ②mRNA加工、成熟水平

    關于基因表達的轉錄機制介紹

      基因表達的轉錄過程由RNA聚合酶(RNAP)進行,以DNA為模板,產物為RNA。RNA聚合酶沿著一段DNA移動,留下新合成的RNA鏈。  基因組DNA由兩條反向平行和反向互補鏈組成,每條鏈具有5'和3'末端。這兩條鏈分別稱為“模板鏈”(產生RNA轉錄物的模板)和“編碼鏈”(含有轉

    關于基因表達反式作用的介紹

      與“順式作用”相對,反式作用指的是其作用范圍可以影響到不同DNA鏈上的基因(順式作用的調控僅限于同一條鏈上的基因),故名。  反式作用的調控原理是借助產生有調控功能的蛋白質而進行的。由于蛋白質合成之后的選擇性結合不限于表達它的這條DNA鏈,所以相比于順勢作用,反式作用的調控范圍更廣。  例如,某

    關于基因表達的轉錄調控介紹

      基因表達的轉錄調控可分為三種主要途徑:1)遺傳調控(轉錄因子與靶標基因的直接相互作用);2)調控轉錄因子與轉錄機制相互作用,3)表觀遺傳調控(影響轉錄的DNA結構的非序列變化)。  通過轉錄因子直接調控靶標DNA表達是最簡單和最直接的轉錄調控改變轉錄水平的方法。基因的編碼區周圍通常都具有幾個蛋白

    關于基因表達載體的基本介紹

      基因表達載體的構建(即目的基因與運載體結合)是實施基因工程的第二步,也是基因工程的核心。其構建目的是使目的基因能在受體細胞中穩定存在,并且可以遺傳給下一代,同時,使目的基因能夠表達和發揮作用。  基因工程(genetic engineering)  構成:啟動子、終止子、標記基因、目的基因  又

    關于LacZ基因的時空表達介紹

      轉基因小鼠實驗系統已被廣泛用于單一基因功能的研究,如組織特異表達和發育程序的調控。產生轉基因小鼠最普遍的方法是將DNA通過顯微注射注入受精卵的原核中。在研究小鼠胚胎發育過程中外源基因的時空表達方面,將融合基因注射進入小鼠受精卵原核中更是一條行之有效的途徑。  通過上述方法,將SV40早期啟動子和

    關于基因表達順式作用的介紹

      順式作用是生物體進行基因表達調節的方式之一,與“反式作用”相對。順式作用指的是,調節因子是與被調節基因同處于一條DNA鏈上的另一端DNA片段而進行的調節。   以二倍體生物為例,對于某一位置的基因,兩條同源染色體上會有一對等位基因和一對相應的順式調節因子。如果其中一個順式調節因子發生突變而產生

    多藥耐藥基因編碼蛋白(P170)的表達

    實驗步驟 ? ? ? ? ? ? 展開

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载