• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • ATP酶的作用機制

    關于ATP酶催化ADP氧化磷酸化成ATP的機制,先后提出過幾種假說 1、化學偶聯假說;2、構象假說;3、化學滲透假說。目前流行的是化學滲透假說,由英國生物化學家P.Mitchell于1961年提出。該學說很好地說明線粒體內膜中電子傳遞、質子電化學梯度建立、ADP磷酸化的關系,并具有大量的實驗支持,得到公認并獲得了1978年諾貝爾獎。 [1] 化學滲透假說的基本設想是:當高能電子沿呼吸鏈傳遞時,釋放出的能量使質子(H+)從線粒體內膜的基質側泵至膜間隙;內膜形成電化學質子梯度。在該梯度中蘊藏了能量,這種能量經ATP合成酶催化驅使ADP和無機磷酸形成ATP,即為氧化磷酸化過程。此假說依據線粒體的功能有四點具體的假設:1、呼吸鏈各組成成分在線粒體內膜上有一定的位置。當電子從一種載體傳遞至另一種載體時,將質子泵出基質2、線粒體ATP合成酶復合體也可跨膜轉運質子,但其作用是可逆的。該復合體利用足夠的電化學質子梯度能量在其......閱讀全文

    ATP酶的作用機制

    關于ATP酶催化ADP氧化磷酸化成ATP的機制,先后提出過幾種假說 1、化學偶聯假說;2、構象假說;3、化學滲透假說。目前流行的是化學滲透假說,由英國生物化學家P.Mitchell于1961年提出。該學說很好地說明線粒體內膜中電子傳遞、質子電化學梯度建立、ADP磷酸化的關系,并具有大量的實驗支持,得

    ATP酶的作用機制介紹

      關于ATP酶催化ADP氧化磷酸化成ATP的機制,先后提出過幾種假說  1、化學偶聯假說;  2、構象假說;  3、化學滲透假說。  目前流行的是化學滲透假說,由英國生物化學家P.Mitchell于1961年提出。該學說很好地說明線粒體內膜中電子傳遞、質子電化學梯度建立、ADP磷酸化的關系,并具有

    鈉鉀ATP酶的作用機制

    鈉鉀泵的作用方式可因不同生理條件而異,在紅細胞膜中可能有以下幾種方式:⒈ 正常的作用方式——利用ATP的水解與Na+-K+的跨膜轉運相偶聯。⒉ 泵的反方向作用——利用Na+-K+的跨膜轉運來推動ATP的合成。⒊ Na+- Na+交換反應可能與ATP和ADP交換反應相偶聯。⒋ K+?- K+交換反應與

    概述腺苷三磷酸酶(ATP酶)的作用機制

      關于ATP酶催化ADP氧化磷酸化成ATP的機制,先后提出過幾種假說  1、化學偶聯假說;  2、構象假說;  3、化學滲透假說。  目前流行的是化學滲透假說,由英國生物化學家P.Mitchell于1961年提出。該學說很好地說明線粒體內膜中電子傳遞、質子電化學梯度建立、ADP磷酸化的關系,并具有

    ATP酶的反應機制

    ATP酶與ATP水解反應耦合的轉運是一個嚴格的化學反應,即每分子ATP水解能夠使一定數量的溶液分子被轉運。例如,對于鈉鉀ATP酶,每分子ATP水解能夠使3個鈉離子被運出細胞,同時2個鉀離子被運入。跨膜ATP酶需要ATP水解所產生的能量,因為這些酶需要做功:它們逆著熱力學上更容易發生的方向來進行物質運

    ATP酶的反應機制介紹

      ATP酶與ATP水解反應耦合的轉運是一個嚴格的化學反應,即每分子ATP水解能夠使一定數量的溶液分子被轉運。例如,對于鈉鉀ATP酶,每分子ATP水解能夠使3個鈉離子被運出細胞,同時2個鉀離子被運入。  跨膜ATP酶需要ATP水解所產生的能量,因為這些酶需要做功:它們逆著熱力學上更容易發生的方向來進

    鈉鉀ATP酶的生理作用

    細胞內高鉀是許多代謝反應進行的必需條件;防止細胞水腫;勢能貯備。鈉鉀泵的作用方式可因不同生理條件而異,在紅細胞膜中可能有以下幾種方式:⒈ 正常的作用方式——利用ATP的水解與Na+-K+的跨膜轉運相偶聯。⒉ 泵的反方向作用——利用Na+-K+的跨膜轉運來推動ATP的合成。⒊ Na+- Na+交換反應

    簡述鈉鉀ATP酶的作用

      細胞內高鉀是許多代謝反應進行的必需條件;防止細胞水腫;勢能貯備。  鈉鉀泵的作用方式可因不同生理條件而異,在紅細胞膜中可能有以下幾種方式:  1、正常的作用方式——利用ATP的水解與Na+-K+的跨膜轉運相偶聯。  2、泵的反方向作用——利用Na+-K+的跨膜轉運來推動ATP的合成。  3、 N

    簡述腺苷三磷酸酶(ATP酶)的反應機制

      ATP酶與ATP水解反應耦合的轉運是一個嚴格的化學反應,即每分子ATP水解能夠使一定數量的溶液分子被轉運。例如,對于鈉鉀ATP酶,每分子ATP水解能夠使3個鈉離子被運出細胞,同時2個鉀離子被運入。  跨膜ATP酶需要ATP水解所產生的能量,因為這些酶需要做功:它們逆著熱力學上更容易發生的方向來進

    北大昌增益教授最新文章:ATP合酶作用新機制

      ATP合酶利用跨膜離子(主要是質子)梯度提供的能量, 催化由ADP和Pi(磷酸)合成ATP的反應. 已有證據表明, 這種催化反應通過ATP合酶內部亞基之間的相對旋轉而實現. 然而, 現有的基于整合在細胞膜內的c環及附著于其上的中心桿(由e和g亞基組成)轉動的ATP合酶旋轉模型存在多方面的理論缺陷

    合理作用腺苷三磷酸酶(ATP酶)的介紹

      ATP作為一種輔酶,有改善肌體代謝的作用,可參與體內脂肪、蛋白質、糖、核酸、核苷酸等代謝過程。它同時又是體內能量的主要來源,為吸收、分泌、肌肉收縮以及進行生化合成反應等過程提供所需要的能量。常用于心肌病、肝炎、進行性肌萎縮、神經性耳聾等疾病的治療.  ATP廣泛用于改善機體代謝,以及疾病的輔助治

    酶的作用機制

    酶的作用機制主要是通過降低化學反應的活化能,來加速反應的進行,具體過程如下?2:形成酶 - 底物復合物:酶在催化某一反應時,首先會在其活性中心與底物結合,生成酶 - 底物復合物(ES)。酶的活性中心是酶分子中與底物結合并起催化作用的空間,包含結合位點和催化位點。結合位點保證底物正確結合在酶的催化位點

    葉綠體ATP酶的催化作用過程

    催化在葉綠體中合成ATP的酶與線粒體中的ATP酶十分相似。葉綠體中ATP酶也像門把位于類囊膜外側。存在于不垛疊的類囊膜中。ATP酶可分為CF1和CF0兩部分。CF0插在膜中,起質子通道作用,CF1由α3、β3、γ、δ、ε亞基組成,α、β亞基有結合ADP的功能,γ亞基控制質子流動,δ亞基與CF0結合,

    ATP合成的部位——ATP酶的相關介紹

      質子反向轉移和合成ATP是在ATP酶(腺苷三磷酸酶 adenosine triphosphatase,ATPase)上進行的。葉綠體內囊體膜上的ATP酶也稱偶聯因子(coupling factor)或CF1-CF0復合體。葉綠體的ATP酶與線粒體、細菌膜上的ATP酶結構十分相似,都由兩個蛋白復合

    鉀ATP酶的組成

    Na—K 泵由α、β兩亞基組成。α亞基為分子量約 120KD 的跨膜蛋白,既有Na、K 結合位點,又具 ATP 酶活性,因此 Na—K 泵又稱為 Na—K—ATP 酶。β亞基為小亞基,是分子量約 50KD 的糖蛋白。一般認為 Na—K 泵首先在膜內側與細胞內的 Na 結合,ATP 酶活性被激活后,由

    ATP合酶的組成

    ATP合酶主要由F?(伸在膜外的水溶性部分) 和Fo(嵌入膜內)組成(圖1)。不同物種來源的 ATP合酶含的亞基和數目不盡相同。以牛心線粒體 ATP合酶為例,它的F?含有僅α3、β3、γ、δ、ε共9 個亞基,Fo含a、b2、C10共13個亞基,F?與Fo之間有OSCP柄相連接,還有抑制蛋白。線粒體F

    鉀ATP酶的組成

    Na—K 泵由α、β兩亞基組成。α亞基為分子量約 120KD 的跨膜蛋白,既有Na、K 結合位點,又具 ATP 酶活性,因此 Na—K 泵又稱為 Na—K—ATP 酶。β亞基為小亞基,是分子量約 50KD 的糖蛋白。一般認為 Na—K 泵首先在膜內側與細胞內的 Na 結合,ATP 酶活性被激活后,由

    ATP酶的應用特點

    ATP合成酶是一類線粒體與葉綠體中的合成酶,它廣泛存在于線粒體、葉綠體、原核藻、異養菌和光合細菌中,是生物體能量代謝的關鍵酶。ATP合成酶可以在跨膜質子動力勢的推動下,利用ADP和Pi催化合成生物體的能量“通貨”——ATP。一般來說,機體所需的大多數ATP都是由ATP合酶產生的。據估計,人體每天進行

    ATP合酶的組成

    ATP合酶主要由F?(伸在膜外的水溶性部分) 和Fo(嵌入膜內)組成(圖1)。不同物種來源的 ATP合酶含的亞基和數目不盡相同。以牛心線粒體 ATP合酶為例,它的F?含有僅α3、β3、γ、δ、ε共9 個亞基,Fo含a、b2、C10共13個亞基,F?與Fo之間有OSCP柄相連接,還有抑制蛋白。線粒體F

    NSP酶的作用的機制

    NSP酶的作用的機制也日臻完善。其作用機制主要為以下幾方面:(1)使麥類日糧中高粘度的水溶性NSP水解成多糖片段,降低腸道內容物粘度,減少粘度對養分和內源消化酶的擴散阻礙作用,提高麥類日糧養分的消化率和吸收利用率。(2)加速各類植物性原料細胞壁破裂。使細胞壁包裹的各類營養物質充分釋放出來,與畜禽腸道

    什么是ATP酶?

    ATP酶又稱為三磷酸腺苷酶,是一類能將三磷酸腺苷(ATP)催化水解為二磷酸腺苷(ADP)和磷酸根離子的酶,這是一個釋放能量的反應。在大多數情況下,能量可以通過傳遞而被用于驅動另一個需要能量的化學反應。這一過程被所有已知的生命形式廣泛利用。

    簡述Dicer酶的作用機制

      Dicer的作用機制Bernstein認為分二步:  第一步:Dicer結合到dsRNA,dsRNA被加工成許多短片段,每個片段約22nt。  第二步:22nt的siRNA通過PAZ與含有PAZ的Argonaute蛋白結合,而RNase與后者形成多個亞單元的復合物,這樣使得22ntsiRNA特異

    糖苷酶的作用機制

      N-糖基化是在內質網上由糖基轉移酶催化,在內分泌蛋白和膜結合蛋白的天冬酰氨殘基的氨基上結合寡糖的過程,即在粗面內質網的核糖體上合成蛋白肽鏈的同時,一旦形成天冬氨酸-Xaa-色氨酸-/絲氨酸(Asn-Xaa-Ser/Thr, Xaa為除脯氨酸外的所有氨基酸殘基)三聯序列子密碼,即糖基化位點,才有可

    核酸酶的作用機制

    不同來源的核酸酶,其專一性、作用方式都有所不同。有些核酸酶只能作用于RNA,稱為核糖核酸酶(RNase),有些核酸酶只能作用于DNA,稱為脫氧核糖核酸酶(DNase),有些核酸酶專一性較低,既能作用于RNA也能作用于DNA,因此統稱為核酸酶(nuclease)。根據核酸酶作用的位置不同,又可將核酸酶

    嗜冷酶的作用機制

    1993 年, Rentier小組對幾種嗜冷性蛋白酶、脂酶和半乳糖苷酶進行了研究, 發現它們含有幾個嗜溫酶所沒有的“額外”氨基酸殘基。Feller等人建立的計算機模型也表明,嗜冷蛋白酶含有大量帶負電荷的氨基酸殘基,特別是天冬氨酸殘基;分子表面的四個極性環狀結構呈伸展狀態;分子內缺少離子間作用與疏水作

    酪氨酸酶的作用機制

    酪氨酸酶活性中心呈現出雙核銅中心結構,由2個銅離子位點組成,與蛋白質中的組氨酸殘基結合,并且由1個內源橋基將2個銅離子聯系起來。當酪氨酸等物質和酶過渡絡合時,主要是羥基和酶的活性中心上的原子鍵合發生作用。在黑色素的催化反應過程中,將其分為氧化態(Eoxy)、還原態(Emet)和脫氧態(Edeoxy)

    ATP合成的結合轉化機制

    γ-亞基的轉動引起β亞基的構象依緊繃(T)、松弛(L)和開放(O)的順序變化,完成ADP和Pi的結合、 ATP的形成以及ATP的釋放三個過程光合磷酸化的抑制劑葉綠體進行光合磷酸化,必須:(1)類囊體膜上進行電子傳遞;(2)類囊體膜內外有質子梯度;(3)有活性的ATP酶。破壞這三個條件之一的試劑都能使

    線粒體ADP/ATP載體轉運ATP和ADP的分子機制

      在一項新的研究中,來自英國劍橋大學、東安格利亞大學、比利時弗蘭德斯生物技術研究所(VIB)和美國國家神經疾病與卒中研究所的研究人員發現了一種稱為線粒體ADP/ATP載體(mitochondrial ADP/ATP carrier)的關鍵轉運蛋白如何轉運三磷酸腺苷(ATP),即細胞的化學燃料。這個

    ATP熒光儀的作用

    ATP熒光儀的作用是:檢測的是物體表面的總菌數,可以立即告知物體表面的潔凈度狀況,可以作為即時預警,彌補傳統方法的不足,但又與傳統培養法相互補充。根據ATP檢測儀檢測數據趨勢掌控清洗衛生狀況,檢測的可重復性是衡量其性能的重要指標。

    ATP水解的作用介紹

      生物體內各種活動所需要的能量,形式上都由ATP水解而供應的。各種化學過程所釋放的熱能,則用于維持體溫。  ATP水解釋放的能量:  ATP+H2O=ADP+Pi+能  1、根據計算,在pH7等標準狀況下,每水解1摩爾ATP可釋出7.3千卡或30.4千焦耳的能量。  2、在體內的條件下,即近于pH

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载