• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 光鑷的技術特點

    光鑷是對單光束梯度力光阱的形象的稱呼,因為它與宏觀的機械鑷子具有相似的操控物體的功能。但與宏觀的機械鑷子相比,或者與傳統的操控微納米粒子的顯微微針或原子力顯微鏡等相比,光鑷具有不可比擬的優越性。光鑷對微粒的操控是非接觸的遙控方式,不會給對象造成機械損傷。這使得光鑷在生物學研究特別是單細胞單分子研究領域應用非常合適。首先,光鑷捕獲微粒的尺度在幾十納米到幾十微米,正好是生物細胞、細胞器以及生物大分子的尺度范圍。其次,光鑷的溫和操控不會損失細胞,雖然激光會產生熱,但可以通過選擇合適的波長,避開細胞對光的吸收波長,將熱效應降到最低。另外,由于大部分細胞膜是透明的,光可以穿過細胞膜操控細胞內部微粒,這是其他操控手段無法做到的。光鑷不僅可以操控微粒,還可以進行微小力的測量,粒子偏離捕獲中心的距離和其受到的回復力成正比,類似與彈簧,在操控過程中能實時感應俘獲粒子的微小負荷。因此,光鑷是極其靈敏的力傳感器,其作為微小力的探針,可以進行細胞和生物......閱讀全文

    光鑷技術的特點

    光鑷是對單光束梯度力光阱的形象的稱呼,因為它與宏觀的機械鑷子具有相似的操控物體的功能。但與宏觀的機械鑷子相比,或者與傳統的操控微納米粒子的顯微微針或原子力顯微鏡等相比,光鑷具有不可比擬的優越性。光鑷對微粒的操控是非接觸的遙控方式,不會給對象造成機械損傷。這使得光鑷在生物學研究特別是單細胞單分子研究領

    光鑷的技術特點

    光鑷是對單光束梯度力光阱的形象的稱呼,因為它與宏觀的機械鑷子具有相似的操控物體的功能。但與宏觀的機械鑷子相比,或者與傳統的操控微納米粒子的顯微微針或原子力顯微鏡等相比,光鑷具有不可比擬的優越性。光鑷對微粒的操控是非接觸的遙控方式,不會給對象造成機械損傷。這使得光鑷在生物學研究特別是單細胞單分子研究領

    光鑷技術介紹

    光鑷技術是美國科學家于1986年發明的。光鑷又稱為單光束梯度光阱。簡單的說.就是用一束高度匯聚的激光形成的三維勢阱來俘獲,操縱控制微小粒子。自誕生以來,光鑷技術已經在微米尺度量級粒子的操縱控制,粒子間的相互作用等方面的研究中發揮了重要作用。1969年.Ashkin通過理論計算認為聚焦的激光能推動尺寸

    光鑷技術的應用

    光鑷的發明使光的力學效應走向實際應用,使人們在許多研究中從被動的觀察轉而成為主動的操控,同時光鑷對于捕獲微小粒子、測量微小作用力及生產微小器件等許多方面都有非常重要的意義,現主要從以下幾個方面介紹光鑷的研究及應用?。光鑷在生物細胞上的應用研究對細胞操控的研究光鑷操控細胞,可以高選擇性的分選細胞或細胞

    光鑷技術的產生

    光鑷技術是美國科學家于1986年發明的。光鑷又稱為單光束梯度光阱。簡單的說.就是用一束高度匯聚的激光形成的三維勢阱來俘獲,操縱控制微小粒子。自誕生以來,光鑷技術已經在微米尺度量級粒子的操縱控制,粒子間的相互作用等方面的研究中發揮了重要作用。1969年.Ashkin通過理論計算認為聚焦的激光能推動尺寸

    光鑷技術的原理

    光鑷技術基于光輻射壓力與單光束梯度力光阱。光輻射壓力光照射物體時,由于電磁波具有能量,也有動量,所以,在物體表面形成反射和吸收,同時會對表面形成壓力作用,成為光壓(光輻射壓力)。通過激光的引進,使得光壓效應在現實應用中有了很大的作用,特別是科學研究中。梯度力為了闡明梯度力的概念,以透明介質小球為例說

    光鑷的簡介

    光鑷是采用以芯片為基礎的光子共振捕獲技術的光阱,能對納米至微米級的粒子進行操縱和捕獲,利用NanoTweezer顯微鏡納米光鑷轉換裝置可把現有顯微鏡升級改造為光鑷。注:NanoTweezer顯微鏡納米光鑷轉換裝置,是個顯微鏡附上裝置。該裝置使研究人員使用現有顯微鏡能夠捕獲、操縱納米級微粒。

    光鑷的原理

    光鑷技術基于光輻射壓力與單光束梯度力光阱。光輻射壓力光照射物體時,由于電磁波具有能量,也有動量,所以,在物體表面形成反射和吸收,同時會對表面形成壓力作用,成為光壓(光輻射壓力)。通過激光的引進,使得光壓效應在現實應用中有了很大的作用,特別是科學研究中。梯度力圖1 單光束梯度力光阱

    光鑷的產生

    最近,小編被我司的工程師小姐姐安利了一部據說是英國最長壽的科幻劇《神秘博士》(Doctor Who)。在2018年底剛剛回歸的十一季中,新上任的第十三任Doctor造出了一件亮眼的神器——升級版音速起子,可謂是上可打外星人,下可開防盜門,有點無所不能的意思。 十三姨和她的起子而在咱們現實的物理學

    光鑷的定義

    由于激光聚集可形成光阱,微小物體受光壓而被束縛在光阱處,移動光束使微小物體隨光阱移動,借此可在顯微鏡下對微小物體(如病毒、細菌以及細胞內的細胞器及細胞組分等)進行的移位或手術操作。光鑷?,又被稱為單光束梯度力光阱,日常,我們用來挾持物體的鑷子,都是有形物體,我們感覺到鑷子的存在,然后通過鑷子施加一定

    什么是光鑷?

    光鑷是采用以芯片為基礎的光子共振捕獲技術的光阱,能對納米至微米級的粒子進行操縱和捕獲,利用NanoTweezer顯微鏡納米光鑷轉換裝置可把現有顯微鏡升級改造為光鑷。

    光鑷技術成功捕獲活體動物細胞

      最新發現與創新   中國科學技術大學光學與光學工程系李銀妹課題組,近日與上海交通大學魏勛斌教授合作,采用活體動物內的細胞,發展了動物體內細胞三維光學捕獲技術。日前,國際著名學術期刊《自然·通訊》在線發表了這項研究成果,網站還以《醫學研究:用光清除血管被堵塞的血管》為題對該研究工作進行報道。

    光鑷結合其他技術在生物上的應用研究

    光鑷結合其他技術在生物上的應用研究光鑷由于其可對多個微小粒子進行復雜操控的特點以及飛速的發展,在其本身的技術研究受到越來越多關注的同時,也在不斷開拓與其他領域技術結合的應用。

    光鑷結合其他技術在生物上的應用研究

    光鑷結合其他技術在生物上的應用研究光鑷由于其可對多個微小粒子進行復雜操控的特點以及飛速的發展,在其本身的技術研究受到越來越多關注的同時,也在不斷開拓與其他領域技術結合的應用。?光鑷與高空間分辨率技術的結合光鑷與具有高空間分辨率本領的技術結合,使之具備了更精細的結構分辨能力和動態操控能力,目前,國際上

    光鑷結合其他技術在生物上的應用研究

    光鑷由于其可對多個微小粒子進行復雜操控的特點以及飛速的發展,在其本身的技術研究受到越來越多關注的同時,也在不斷開拓與其他領域技術結合的應用。光鑷與高空間分辨率技術的結合光鑷與具有高空間分辨率本領的技術結合,使之具備了更精細的結構分辨能力和動態操控能力,目前,國際上Coirault. C等人已成功地將

    新型光鑷可捕獲納米顆粒

      光鑷是一項正在飛速發展的技術,近年來,圍繞光鑷的新型應用層出不窮。光鑷是用高度聚焦的激光束的焦點捕獲粒子,從而使研究人員無需任何物理接觸即可操縱物體的技術。目前,光鑷已被用于捕獲微米級的物體,然而研究人員日益渴望將光鑷的應用擴展到納米級粒子上去。由法國雷恩第一大學Janine Emile和Oli

    光調制技術的特點

    光調制技術就是將一個攜帶信息的信號疊加到載波光波上的一種調制技術。光調制能夠使光波的某些參數如振幅、頻率、相位、偏振狀態和持續時間等按一定的規律發生變化。其中實現光調制的裝置稱為光調制器。

    拉曼光鑷技術成功實現單細胞無損識別與精確提取

      單細胞研究是當今生物醫學領域備受關注的熱點方向之一。傳統生物學對細胞進行識別,往往需要借助染色等標記方式,導致細胞的損傷甚至死亡,限制對同一特定細胞的進一步分析和應用。近日,北京大學信息科學技術學院電子學系、納米器件物理與化學教育部重點實驗室葉安培教授課題組設計了一款生物芯片,并結合自主開發的“

    光鑷在生物細胞上的應用研究

    對細胞操控的研究光鑷操控細胞,可以高選擇性的分選細胞或細胞器?。目前,研究者已經建立了一套分選單條染色體的實驗方法,為基因測序提供了更有效、更準確的方法。同時光鑷還可用來測量細胞表面的電荷,因為細胞表與荷細胞的生長和細胞的凋亡有著非常密切的關系。對細胞應變能力的研究細胞內部的應變能力在通常情況下是很

    光鑷在生物細胞上的應用研究

    對細胞操控的研究光鑷操控細胞,可以高選擇性的分選細胞或細胞器。目前,研究者已經建立了一套分選單條染色體的實驗方法,為基因測序提供了更有效、更準確的方法。同時光鑷還可用來測量細胞表面的電荷,因為細胞表與荷細胞的生長和細胞的凋亡有著非常密切的關系。對細胞應變能力的研究細胞內部的應變能力在通常情況下是很難

    光鑷陣列成功操控單個多原子分子

    科技日報北京5月8日電?(記者劉霞)精確控制單個多原子分子有望為諸多領域帶來巨大突破。然而,實現這一點的關鍵挑戰在于如何完全控制分子的內部量子態和運動自由度。在一項最新研究中,美國哈佛大學物理學家首次成功將單個多原子分子捕獲在光鑷陣列內,并以超過90%的保真度直接且無損地對光鑷陣列中單個分子成像。相

    光鑷陣列成功操控單個多原子分子

    精確控制單個多原子分子有望為諸多領域帶來巨大突破。然而,實現這一點的關鍵挑戰在于如何完全控制分子的內部量子態和運動自由度。在一項最新研究中,美國哈佛大學物理學家首次成功將單個多原子分子捕獲在光鑷陣列內,并以超過90%的保真度直接且無損地對光鑷陣列中單個分子成像。相關論文發表于新一期《自然》雜志。將原

    “魔法波長光鑷”實現分子長時量子糾纏

    英國杜倫大學研究人員首次利用精確控制的光學陷阱,即“魔法波長光鑷”,創造了一個高度穩定的環境,成功實現了分子間的長時間量子糾纏,為研究量子計算、傳感和基礎物理學開辟了新途徑。這一突破是量子科學領域一系列進展中的最新成果,標志著在利用分子開發復雜量子技術方面的重大進步。量子糾纏示意圖。圖片來源:NAS

    光鑷在生物大分子上的應用研究

    為了操縱一個生物大分子,往往將兩個涂有肌漿球蛋白的聚苯乙烯小球黏在生物大分子的兩端,稱其為“手柄”,通過光鑷捕獲和操縱小球來達到操控生物大分子的目的。

    光鑷在生物大分子上的應用研究

    為了操縱一個生物大分子,往往將兩個涂有肌漿球蛋白的聚苯乙烯小球黏在生物大分子的兩端,稱其為“手柄”,通過光鑷捕獲和操縱小球來達到操控生物大分子的目的。

    光接收機的技術特點

      1、【航天和一】HY-7330A系列野外型光接收機是新一代HFC網絡的光節點設備。  2、該系列產品完全符合“GY/T185-2002廣播電影電視行業標準”設計要求,計算機輔助設計、微波仿真軟件仿真,各部分功能按模塊方式組合,雙向設計,1GMHz工作平臺,優異的帶內平坦度,帶寬從750MHz-8

    Tweez250si高速多光阱納米光鑷膠體操縱應用

    手性向列膠體中可重構的打結和連接(2011 Science文章)對高聚物,大分子或者復雜材料中的缺陷線的打結或構建微尺度環是材料科學中富有挑戰性的任務。通過使用激光鑷作為一個顯微操控工具,將手性向列液晶膠體中的微觀拓撲缺陷線進行了任意復雜程度的打結和連接。所展示的所有結和連接包括霍普夫連接,大衛之星

    光鑷揭示肺黏液阻止納米粒子通過機理

      德國科學家發現了肺黏液中特殊的凝膠結構,揭示了肺黏液阻止納米粒子通過的原因。該研究加深了對呼吸系統疾病,尤其是感染的理解,將有助于吸入式新藥的開發。相關成果發表于美國《國家科學院學報》上。   通常被稱之為“痰”的黏液黏附在人體呼吸系統氣道的內表面。這種黏性凝膠滋潤肺部并防止小顆粒的滲入,如病

    BioRam?-激光共聚焦拉曼光鑷顯微鏡

    激光共聚焦拉曼光鑷顯微鏡(BioRam?)基于拉曼散射和光阱捕獲原理,創新地將共聚焦拉曼顯微技術與光鑷技術集成于一體,采用同一波長(785nm)的激光用于細胞的光阱捕獲和拉曼信號激發,即可捕獲細胞(即使是溶液中的懸浮細胞)的拉曼信號,又可對單細胞進行移動,實現細胞篩選。不同于常用的細胞分析方法,Bi

    Sci-Rep:科學家利用全息光鑷技術對細胞微環境進行研究

      近日,刊登在國際雜志Scientific Reports上的一篇研究論文中,來自諾丁漢大學的研究人員通過研究構建了一種新型微觀細胞,其可以幫助開發治療疾病的新型療法,這種微觀細胞可以被操作,并且可以利用高強度的紅外線來進行3D模式的研究。  文章中研究者發現如何利用全息光鑷技術(Holograp

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载