• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • Nature子刊:基于納米孔的新甲基化檢測技術

    Mayo診所與Illinois大學的研究人員合作,開發出了一種檢測甲基化DNA的新單分子檢測技術,這種技術以固態的納米孔為基礎。文章發表在Nature旗下的Scientific Reports雜志上。 表觀遺傳學修飾可以不改變基因編碼,而影響基因的開啟或關閉。甲基化是表觀遺傳學修飾的一個重要途徑,細胞通過給DNA鏈添加甲基來調控基因表達。真核生物的基因組中,表觀遺傳學修飾主要以5-甲基胞嘧啶(5 mC)的形式存在。在包括癌癥在內的多種疾病中,這些修飾與轉錄抑制、基因表達、疾病的發生和發展有著重要關聯。 “近年來,人們開始研究用納米孔進行基因組測序和篩選分析。而我們的這種新技術特別適用于研究表觀遺傳學相關疾病,可以免除一些現有方法中的必要步驟,”該研究的共同領導者,Mayo診所的George Vasmatzis博士說。他指出,基于納米孔的甲基化檢測技術,不需要對DNA進行重亞硫酸鹽轉化、熒光標記和PCR......閱讀全文

    新型納米孔器件有望用于表觀遺傳學快捷測序

    新華社布魯塞爾5月9日電(記者潘革平)比利時校際微電子中心(IMEC)9日發表公報說,該中心成功開發出一種能直接讀取單分子DNA(脫氧核糖核酸)堿基的新型光學納米孔器件,有望用于遺傳學研究快捷測序。 據介紹,新型器件結合了表面增強拉曼光譜和納米孔流體技術,能以超高分辨率,實現無標記檢測DN

    新型納米孔器件有望用于表觀遺傳學快捷測序

      比利時校際微電子中心(IMEC)9日發表公報說,該中心成功開發出一種能直接讀取單分子DNA(脫氧核糖核酸)堿基的新型光學納米孔器件,有望用于遺傳學研究快捷測序。  據介紹,新型器件結合了表面增強拉曼光譜和納米孔流體技術,能以超高分辨率,實現無標記檢測DNA中的遺傳編碼以及表觀遺傳變異。研究近期發

    表觀遺傳學關于DNA甲基化

    表觀遺傳學是研究表觀遺傳變異的遺傳學分支學科從目前的研究來看,X 染色體劑量補償、DNA 甲基化、組蛋白密碼、基因組印記、表觀基因組學和人類表觀基因組計劃等問題都是表觀遺傳學研究的內容。其中甲基化是基因組DNA 的一種主要表觀遺傳修飾形式,是調節基因組功能的重要手段。在脊椎動物中,CpG二核

    甲基化芯片在表觀遺傳學中的應用

      表觀遺傳改變可以定義為基因的遺傳性或獲得性改變,但是這種改變和DNA序列改變無關。DNA甲基化是最為常見的表觀遺傳改變;啟動子或第一外顯子CpG島中的甲基化改變將導致基因表達失活;組蛋白的化學修飾也可以作為表觀遺傳改變;組蛋白發生乙酰化改變的基因通常被開啟。    CpG島的異常甲基化是導致基

    甲基化芯片在表觀遺傳學中的應用

    表觀遺傳改變可以定義為基因的遺傳性或獲得性改變,但是這種改變和DNA序列改變無關。DNA甲基化是最為常見的表觀遺傳改變;啟動子或第一外顯子CpG島中的甲基化改變將導致基因表達失活;組蛋白的化學修飾也可以作為表觀遺傳改變;組蛋白發生乙酰化改變的基因通常被開啟。CpG島的異常甲基化是導致基因沉默和過度表

    Nature子刊:基于納米孔的新甲基化檢測技術

      Mayo診所與Illinois大學的研究人員合作,開發出了一種檢測甲基化DNA的新單分子檢測技術,這種技術以固態的納米孔為基礎。文章發表在Nature旗下的Scientific Reports雜志上。   表觀遺傳學修飾可以不改變基因編碼,而影響基因的開啟或關閉。甲基化是表觀遺傳學修飾的一

    兩篇PNAS:蛋白納米孔檢測DNA甲基化

      兩個獨立的研究團隊利用通道蛋白實現納米孔測序,成功鑒別了5-甲基胞嘧啶和5-羥甲基胞嘧啶。這兩篇文章發表在同一期的美國國家科學院院刊PNAS雜志上。   基因組所蘊含的編碼信息,包括DNA序列和核苷酸修飾兩個部分。其中,動態的DNA甲基化模式,是基因表達的重要調控者,與細胞分化、胚胎發育和癌癥

    表觀遺傳學修飾

    組蛋白修飾 表觀遺傳學是指表觀遺傳學改變 (DNA 甲基化、組蛋白修飾和非編碼 RNA 如 miRNA) 對 表觀基因組基因表達的調節,這種調節不依賴基因序列的改變且可遺傳表觀。因素如 DNA 甲基化、組蛋白修飾和 miRNA 是對環境刺激因素變化的反映,這些表觀遺傳學因素相互作用以調節基因

    什么是表觀遺傳學

    是研究不涉及DNA序列改變的基因表達和調控的可遺傳修飾,即探索從基因演繹為表型的過程和機制的一門新興學科。遺傳學是指基于基因序列改變所 致基因表達水平變化,如基因突變、基因雜合丟失和微衛星不穩定等。而表觀遺傳學則是指基于非基因序列改變所致基因表達水平變化,如DNA甲基化和染色質構象變化等;表觀基因組

    甲基化與lncRNA:表觀遺傳學與轉錄組學研究的完美結合

      2017年國自然申請的熱點什么?circRNA,lncRNA,外泌體。除了這些大家耳熟能詳的香饃饃之外,現在很多小伙伴們開始了新的玩法,通過多平臺聯用,將不同層面的東西結合起來,比如,表觀遺傳與非編碼RNA的結合,就是一個很好的例證。   研究背景   肺癌是一種常見的惡性腫瘤,特別在中國,

    甲基化與lncRNA:表觀遺傳學與轉錄組學研究的完美結合

    2017年國自然申請的熱點什么?circRNA,lncRNA,外泌體。除了這些大家耳熟能詳的香饃饃之外,現在很多小伙伴們開始了新的玩法,通過多平臺聯用,將不同層面的東西結合起來,比如,表觀遺傳與非編碼RNA的結合,就是一個很好的例證。研究背景肺癌是一種常見的惡性腫瘤,特別在中國,由于環境的污染,肺癌

    表觀遺傳學分子生物學軟件——DNA甲基化分析工具

    第一類:基于引物設計功能的軟件。此類軟件主要是針對重亞硫酸鹽序列進行甲基化特異性PCR(methylation-specific PCR, MS-PCR or MSP)和重亞硫酸鹽測序(bisulfite sequencing, BS)引物的設計。由于重亞酸鹽修飾的特殊性,使常規的分子生物學

    Nature發表表觀遺傳學重要發現決定性別的RNA甲基化

    N6-methyladenosine(m6A)是真核生物mRNA和長非編碼RNA上最普遍的一種RNA修飾,介導了超過80%的RNA堿基甲基化。人們已經陸續鑒定了m6A所需的“讀”、“寫”和“擦除”蛋白,但對其生物學功能還知之甚少。伯明翰大學的科學家們在Nature雜志上發表文章,揭示了m6A在Sxl

    Nature發表表觀遺傳學重要發現-決定性別的RNA甲基化

      N6-methyladenosine(m6A)是真核生物mRNA和長非編碼RNA上最普遍的一種RNA修飾,介導了超過80%的RNA堿基甲基化。人們已經陸續鑒定了m6A所需的“讀”、“寫”和“擦除”蛋白,但對其生物學功能還知之甚少。  伯明翰大學的科學家們在Nature雜志上發表文章,揭示了m6A

    著名遺傳學家表觀遺傳學新成果

      可卡因成癮性的一個主要挑戰在于,在戒斷期之后的高復發率。但新的研究表明,在藥物戒斷過程中,我們DNA的變化可能為更有效的成癮療法開發,提供了有希望的方法。  加拿大麥吉爾大學和以色列巴爾依蘭大學的研究人員,將這項研究結果發表在最近的《Journal of Neuroscience》。他們指出,戒

    《科學》推出“表觀遺傳學”專題

      10月29日出版的《科學》雜志刊登專題——《表觀遺傳學》(Epigenetics)。專題導言文章《什么是表觀遺傳學》(What Is Epigenetics?)說,多細胞有機體的細胞名義上擁有同樣的DNA序列(因而擁有同樣的遺傳指令系統),但是它們卻維持著不同的顯型。這種記錄了發育和環

    表觀遺傳學和人類疾病

    上個世紀50年代初,Watson和Crick建立了DNA分子結構模型,極大程度地促進了生命科學的發展。自此遺傳學便成為現代醫學研究領域中一個重要的分支。人類已經認識到基因突變可以導致疾病的發生,如慢性進行性舞蹈病(Huntington's chorea, Hc)和囊性纖維化等。近年來

    表觀遺傳學名詞解釋

    表觀遺傳學(英語:epigenetics)又譯為表征遺傳學、擬遺傳學、表遺傳學、外遺傳學以及后遺傳學,在生物學和特定的遺傳學領域,其研究的是在不改變DNA序列的前提下,通過某些機制引起可遺傳的基因表達或細胞表現型的變化。表征遺傳學是1980年代逐漸興起的一門學科,是在研究與經典的孟德爾遺傳學遺傳法則

    納米孔測序技術

    測序長度和準確率的快速提升使得納米孔測序有望顛覆DNA測序市場。紐約威爾康奈爾醫學院的計算生物學家Christopher Mason喜歡在會議上表演一個“絕活”:他和同事先從志愿者手機上收集DNA樣本,然后就能在一個小時內現場進行譜系分析,甚至敘述志愿者一天的生活細節。“我們能從留在手機上的DNA信

    表觀遺傳之DNA甲基化(二)

    二 DNA甲基化?DNA甲基化:DNA甲基化是通過DNA甲基轉移酶在胞嘧啶環的第5個碳原子上共價加成甲基而產生的,從而產生5-甲基胞嘧啶(5-mC),在體細胞中,幾乎僅在二核苷酸CpG的對稱甲基化配對中發現了5-mC,而在胚胎干(ES)細胞中,在非CpG中也觀察到了大量的5-mC。5-mC作為表型和

    表觀遺傳之DNA甲基化(一)

    俗話說,龍生龍,鳳生鳳,老鼠的兒子會打洞。?這句話什么意思呢?想必很多人有不同的看法~~?從傳統的社會認知角度看,就是“出生決定論”,一個人的出生是什么樣的,以后就會有什么樣的作為和成就,家庭決定著個人的前途和發展方向。龍鳳階層的人自出生以來便是龍鳳,若是草根階層,也很難上升到龍鳳圈層,即使有這樣的

    Cancer-Cell專題:癌癥表觀遺傳學

      癌癥中的基因調控與反調控一直是人們關注的熱點,現在這一領域已經取得了很大的進展。Cell旗下的Cancer Cell雜志本月特別推出專題,推薦了四篇有代表性的癌癥表觀遺傳學文章。  Vulnerabilities of Mutant SWI/SNF Complexes in Cancer  癌癥

    顛覆傳統認知,表觀遺傳學之謎

      盡管大多數生物體都是利用基因組上的甲基標記來監控基因表達,淡水原生動物Oxytricha trifallax卻利用這些標記踢走了垃圾DNA(95%的基因組序列)。這一研究發現駁斥了以往研究做出的通常攜帶四個細胞核的單細胞纖毛蟲無甲基化DNA的結論。   論文的第一作者、普林斯頓大學的博士后

    Science:表觀遺傳學的“神秘花園”

      許多研究者都在探尋各種復雜性狀背后的遺傳學基礎。然而,大家往往忽視了天然表觀遺傳學變化為表型帶來的多樣性。表觀遺傳學突變發生在DNA序列之外,將其與DNA序列突變區分開是一項富有挑戰性的工作。   在本期Science雜志上Cortijo等人向人們展示,表觀等位基因( epialleles

    Cell發現表觀遺傳學肥胖開關

      世界就是這么不公平,有些人喝涼水都發胖,有些人怎么吃也胖不了。近年來科學家們發現,個體的肥胖傾向是由基因決定的。然而Cell雜志發表的一項最新研究表明,表觀遺傳學調控也在其中起到了關鍵作用。  Max Planck研究所的J. Andrew Pospisilik領導團隊對遺傳背景完全相同的小鼠和

    堅持鍛煉的表觀遺傳學意義

      眾所周知,體育鍛煉能夠改善包括代謝、肺活量在內的多項身體機能。那么體育鍛煉是怎樣在分子水平上施加影響的呢?  人們發現,鍛煉能促進肌肉重塑,改變肌肉的纖維結構和蛋白組成。“堅持體育鍛煉對健康很有幫助,能夠防治一系列常見疾病,比如心血管疾病和二型糖尿病。理解鍛煉有益健康的具體機制,可以幫助我們進一

    牛津納米孔收購加拿大Northern-Nanopore-擴張固態納米孔領域

      近日,牛津納米孔技術公司(Oxford Nanopore)表示收購加拿大生物技術初創公司Northern Nanopore Instruments(NNi),這家公司開發了一種固態納米孔制造技術。  本次收購沒有披露財務條款。  據Oxford Nanopore介紹,NNi專門從事低成本、精確的

    Nature報道表觀遺傳學新發現

      日前,芝加哥大學的科學家們在Nature上發表最新的研究成果。這項研究揭示了N6-甲基腺苷(N6-methyladenosine,m6A)調控RNA-蛋白質相互作用的一個未知機制。  RNA結合蛋白通過與單鏈RNA結合基序(RNA binding motif,RBMs)1、2、3的結合來控制細胞

    表觀遺傳學研究獲重大突破

      同濟大學高紹榮團隊首次從全基因組水平上揭示了小鼠植入前胚胎發育過程中的組蛋白H3K4me3和HK27me3修飾建立過程,并發現寬的H3K4me3修飾在植入前胚胎發育過程中對基因表達發揮重要調控作用。相關成果9月15日在線發表于《自然》。  高紹榮研究組利用極少量的細胞檢測了小鼠植入前胚胎發育各個

    Nature:遏制哮喘的表觀遺傳學酶

      研究人員發現重編程小鼠體內促哮喘的免疫細胞可以減少氣道損傷和炎癥,并有可能促成哮喘患者的新治療。   研究人員能夠重編程的促哮喘細胞是一種稱為Th2細胞的免疫細胞,他們確定了一種可以修飾這些細胞DNA的酶。該酶可作為開發過量Th2細胞導致的慢性炎癥疾病,尤其是過敏性哮喘的新療法的一個靶點。相關

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载