• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>

  • 光磁電效應和霍爾效應的異同

    光磁電效應和霍爾效應的異同雖然,光磁電效應與霍爾效應相似,但是它們是不同的效應。體現在三個方面:1)光磁電效應中在磁場作用下移動的是電子空穴對,而霍爾效應中移動的是自由電子。2)針對材料不同,一個是半導體材料,一個是導體材料。3)使用情形也不一樣,一個需要光照,一個不需要。利用光磁電效應可制成半導體紅外探測器。這類半導體材料有Ge、InSb、InAs、PbS、CdS等。......閱讀全文

    光磁電效應和霍爾效應的異同

    光磁電效應和霍爾效應的異同雖然,光磁電效應與霍爾效應相似,但是它們是不同的效應。體現在三個方面:1)光磁電效應中在磁場作用下移動的是電子空穴對,而霍爾效應中移動的是自由電子。2)針對材料不同,一個是半導體材料,一個是導體材料。3)使用情形也不一樣,一個需要光照,一個不需要。利用光磁電效應可制成半導體

    光磁電效應和霍爾效應的異同

    雖然,光磁電效應與霍爾效應相似,但是它們是不同的效應。體現在三個方面,1)光磁電效應中在磁場作用下移動的是電子空穴對,而霍爾效應中移動的是自由電子。2)針對材料不同,一個是半導體材料,一個是導體材料。3)使用情形也不一樣,一個需要光照,一個不需要。利用光磁電效應可制成半導體紅外探測器。這類半導體材料

    光磁電效應的概念

    光磁電效應,Photo-Magneto-Electric Effects (PME Effects )光磁電效應是指在垂直于光束照方向施加外磁場時半導體兩側面間產生電位差的現象。

    光磁電效應的概念

    光磁電效應,Photo-Magneto-Electric Effects (PME Effects )光磁電效應是指在垂直于光束照方向施加外磁場時半導體兩側面間產生電位差的現象。

    光磁電效應的技術原理

    光磁電效應,為1931年提出的一條物理學理論,即在垂直光照方向上(z向)再加一磁場,則在半導體的兩側端面間產生電位差,稱為光磁電效應。光磁電效應的機制是光照射到半導體表面后生成非平衡載流子的濃度梯度,使載流子產生定向擴散速度,磁場作用在載流子上的洛侖茲力使正負載流子分離,形成端面電荷累積的電位差和橫

    光磁電效應的技術原理

    光磁電效應,為1931年提出的一條物理學理論,即在垂直光照方向上(z向)再加一磁場,則在半導體的兩側端面間產生電位差,稱為光磁電效應。光磁電效應的機制是光照射到半導體表面后生成非平衡載流子的濃度梯度,使載流子產生定向擴散速度,磁場作用在載流子上的洛侖茲力使正負載流子分離,形成端面電荷累積的電位差和橫

    磁光效應和光磁效應的概念

    磁光效應克爾磁光效應的最重要應用就是觀察鐵磁材料中難以捉摸的磁疇。因不同磁疇區的磁化強度的不同取向使入射偏振光產生方向、大小不同的偏振面旋轉,再經過檢偏器后就出現了與磁疇相應的明暗不同的區域。利用現代技術,不但可進行靜態觀察,還可進行動態研究。這些都導致一些重要發現和關于磁疇、磁學參數的有效測量。光

    室溫非線性霍爾效應

      最新Nature Nanotechnology:室溫非線性霍爾效應  幾何相位和拓撲之間的緊密聯系使得基于霍爾效應的現象已成為現代材料和物理學的主要研究重點之一,這促使了人們對物質拓撲態的探索和許多相應實際應用的開發。在線性響應方式下,霍爾電導率需要通過磁化或外部磁場來打破時間反演對稱性。但最近

    正常塞曼效應和反常塞曼效應

    在正常塞曼效應中,每條譜線分裂為3條分線,中間1條為π組分,其頻率不受磁場的影響;其他兩條稱為組分,其頻率與磁場強度成正比。在反常塞曼效應中,每條譜線分裂為3條分線或更多條分線,這是由譜線本身的性質所決定的。反常塞曼效應,是原子譜線分裂的普遍現象,而正常塞曼效應僅僅是假定電子自旋動量矩為零,原子只有

    波克爾斯效應和克爾效應的區別

    波克爾斯效應和克爾效應的區別在于:波克爾斯效應是與電場大小成正比,而克爾效應則是與電場大小的平方成比例的。

    波克爾斯效應和克爾效應的區別

    波克爾斯效應和克爾效應的區別在于:波克爾斯效應是與電場大小成正比,而克爾效應則是與電場大小的平方成比例的。

    波克爾斯效應和克爾效應的區別

    波克爾斯效應和克爾效應的區別在于:波克爾斯效應是與電場大小成正比,而克爾效應則是與電場大小的平方成比例的。

    反常霍爾效應研究取得進展

      反常霍爾效應是最基本的電子輸運性質之一。雖然反常霍爾效應早在1881年就被Edwin Hall發現,但其微觀機制的建立卻經歷了一百余年的漫長歷程。本世紀初,牛謙等人的理論工作揭示了反常霍爾效應的內稟機制與材料能帶結構的貝里曲率有關,并得到了廣泛的實驗支持,反常霍爾效應也因此成為當今凝聚態物理研究

    霍爾效應測試儀簡介

      霍爾效應測試儀,是用于測量半導體材料的載流子濃度、遷移率、電阻率、霍爾系數等重要參數,而這些參數是了解半導體材料電學特性必須預先掌控的,因此是理解和研究半導體器件和半導體材料電學特性必備的工具。  霍爾效應測試儀介紹  該儀器為性能穩定、功能強大、性價比高的霍爾效應儀,在國內高校、研究所及半導體

    誘導效應與共軛效應的異同

      (1)不同之處  誘導效應:存在σ鍵中;通過原子間電負性的差異而導致鍵的極性改變使整個分子電子云發生移動;是短距離效應,一般有3個碳原子后基本消失;極化變化是單一方向。  共軛效應:存在于共軛體系中;通過π電子的運動,沿著共軛鏈傳遞;強度一般不因共軛鏈的長度而受影響,屬長距離電子效應;極性交替出

    微波輻射之熱效應和非熱效應

    微波輻射對人體的危害分為「熱效應」和「非熱效應」二大方面。熱效應人體 70% 以上是水,水分子受到電磁波輻射后相互摩擦,引起機體升溫,從而影響到體內器官的正常工作。體溫升高引發各種癥狀,如心悸、頭脹、失眠、心動過緩、白細胞減少,免疫功能下降、視力下降等。產生熱效的電磁波功率密度在 10MW/cm2;

    Caspase級聯反應和效應caspase

    所謂的效應caspase,指的是Caspase 3, 6和7這些能引起細胞的程序性死亡的蛋白酶。一方面它們通過有限的蛋白質水解酶激活下游的目標蛋白(如Caspase激活的脫氧核糖核酸酶, CAD,或是其他的Caspase)。另一方面它們參與核纖肽(在細胞膜上)和肌動蛋白(細胞骨架的成分)的分解過程。

    霍爾效應實驗儀的性能特點

      1. 把勵磁電流、霍爾傳感器工作電流和霍爾電壓接口采用不同規格的插座和專用連接線,接線互換是插不到插座中的,完全消除了接線錯誤的可能性,防止損壞霍爾片和設備確保儀器安全。  2. 勵磁電流、霍爾傳感器的工作電流換向均用繼電器控制,取代了過去傳統的雙刀雙擲開關,最大的優點是大大提高了儀器的可靠性,

    關于霍爾效應實驗儀的概述

       霍爾效應實驗儀可形象地觀察到霍爾電勢的產生、了解霍爾傳感器的道理。線圈的勵磁電流、霍爾傳感器的工作電流換向可用閘刀控制,也可選用繼電器控制。繼電器取代雙刀雙擲開關,大大提高了儀器的可靠性,減少故障。FB510 A 型霍爾效應實驗儀用亥姆霍茲線圈或螺線管產生穩恒磁場,線圈的勵磁電流、霍爾傳感器的

    甘露糖的生理效應和代謝途徑

    生理效應甘露糖,唯一用于在臨床上的糖質營養素,廣泛分布于體液和組織中,尤其是在神經、皮膚、睪丸、視網膜、肝和腸。其直接被利用合成糖蛋白,參與免疫調節。許多疾病正是由于缺乏甘露糖糖化作用中的酵素而導致的。其在人體內生理效應如下:1)調節免疫系統2)巨噬細胞表面有4種接受器可以捕捉抗原,都有甘露糖成分3

    FeSe單晶的高壓霍爾效應研究獲進展

      費米面拓撲結構及其與磁性的相互關聯,被認為是理解鐵基高溫超導機理的關鍵。大多數FeAs基高溫超導體的能帶結構包含位于布里淵區中心的空穴型費米面和位于布里淵區頂角的電子型費米面,因此,空穴和電子費米面之間的散射被普遍認為是鐵基超導電子配對的重要機制。但是,在FeSe基高溫超體系中,包括AxFe2-

    霍爾效應測試儀的主要特點

      1、高精密度電流源  輸出電流之精確度可達2nA,如此微小之電流可用于半絕緣材料之量測,即高電阻值材料之量測。  2、高精密度電表  使用超高精度電表,電壓量測能力可達nV等級,上限可達300V,極適合用于量測低電阻值材料。  3、外型精簡、操作簡單  外型輕巧、美觀大方,磁鐵組之極性更換也很靈

    FeSe單晶的高壓霍爾效應研究獲進展

      費米面拓撲結構及其與磁性的相互關聯,被認為是理解鐵基高溫超導機理的關鍵。大多數FeAs基高溫超導體的能帶結構包含位于布里淵區中心的空穴型費米面和位于布里淵區頂角的電子型費米面,因此,空穴和電子費米面之間的散射被普遍認為是鐵基超導電子配對的重要機制。但是,在FeSe基高溫超體系中,包括AxFe2-

    霍爾效應測試儀的技術參數

      1、變溫,常溫和液氮溫度(77K)下測量;  阻抗:10-6 to 107  載流子濃度(cm-3):107 ?-1021  2、樣品夾具:  彈簧樣品夾具(免去制作霍爾樣品的麻煩);  3、測量材料:所有半導體材料包括Si,ZnO,SiGe,SiC,GaAs,InGaAs,InP,GaN(N型

    壓電效應和拓撲量子相變

       近期,美國賓夕法尼亞州立大學劉朝星教授課題組從理論上提出壓電響應的突變可以表征一系列二維拓撲相變,從而第1次揭示了壓電系數和拓撲相變間的關系。相關成果以“Piezoelectricity and Topological Quantum Phase Transitions in Two-Dime

    小硬盤中的大發現:“巨磁電阻”效應

    體積越來越小,容量越來越大——在如今這個信息時代,存儲信息的硬盤自然而然被人們寄予了這樣的期待。得益于“巨磁電阻”效應這一重大發現,最近20多年來,我們開始能夠在筆記本電腦、音樂播放器等所安裝的越來越小的硬盤中存儲海量信息。瑞典皇家科學院10月9日宣布,將2007年諾貝爾物理學獎授予法國科學家阿爾貝

    超聲波焊接機的熱效應和化學效應介紹

      熱效應  由于超聲波頻率高,能量大,被介質吸收時能產生顯著的熱效應。  化學效應  超聲波的作用可促使發生或加速某些化學反應。例如純的蒸餾水經超聲處理后產生過氧化氫;溶有氮氣的水經超聲處理后產生亞硝酸;染料的水溶液經超聲處理后會變色或退色。這些現象的發生總與空化作用相伴隨。超聲波還可加速許多化學

    X射線光譜儀的吸收效應和增強效應

      吸收效應和增強效應,曲線a表示氫元素中重元素的X射線和含量的關系,種元素的分析光譜受輕元素發生的吸收效應較小,所以在低含量范圍,重元素的X射線強度隨含量的增加而迅速上升,重元素含量很高以后曲線的斜率就變小了;曲線b時分析由原子序數相近的元素所構成的樣品時所得到曲線,待測元素自身吸收稍大于其他共存

    霍爾效應傳感器的基本參數

      標準額定值IPN和額定輸出電流ISN  IPN指電流傳感器所能測試的標準額定值,用有效值表示(A.r.m.s),IPN的大小與傳感器產品的型號有關。  ISN指電流傳感器額定輸出電流,一般為100~400mA,某些型號可能會有所不同。  傳感器供電電壓VA  VA指電流傳感器的供電電壓,它必須在

    使用霍爾效應實驗儀的注意事項

      1、霍爾傳感器各電極引線與對應的電流換向開關(本實驗儀器采用按鈕開關控制的繼電器)的連線已由制造廠家連接好,實驗時不必自己連接。  2、霍爾片性脆易碎,電極甚細易斷,嚴防撞擊或用手去摸,否則容易損壞!霍爾片放置在亥姆霍茲線圈中間,在需要調節霍爾片位置時,亦需要小心謹慎。  3、二維(或一維)移動

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载