• <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • Antpedia LOGO WIKI資訊

    掃描探針顯微鏡的微放電

    掃描探針顯微鏡通常用來對微納米尺度樣品的表面結構與性質進行表征,對形貌表征具有極高的空間分辨率,通過處理和分析微探針與樣品之間的各種相互作用力,可以精確研究樣品局部的電學、力學性質。微放電是一種將放電限制在有限空間內的氣體放電,在大氣壓下當電極尺寸縮小到一定程度時,空氣放電機理與長間隙空氣放電有明顯不同。利用掃描探針顯微鏡在大氣壓下進行微放電試驗,不僅電極結構容易搭建,還可以實現對放電微區的形貌和性質改變進行原位表征,有利于進行微間隙空氣放電機理的研究。經典放電理論能夠對宏觀放電現象進行較為準確的解釋,并且可以對相應放電的應用提供理論支持,而通常用來解釋小間隙、低氣壓下放電現象的湯遜放電理論不能合理解釋介觀尺度的空氣放電現象。 所以為了深入探究微小間隙空氣放電特性和確定場致發射對微放電的作用和機理,為微放電等離子體的高效生產提供理論基礎,基于手動精密......閱讀全文

    掃描探針顯微鏡的微放電

    ? ? ? 掃描探針顯微鏡通常用來對微納米尺度樣品的表面結構與性質進行表征,對形貌表征具有極高的空間分辨率,通過處理和分析微探針與樣品之間的各種相互作用力,可以精確研究樣品局部的電學、力學性質。微放電是一種將放電限制在有限空間內的氣體放電,在大氣壓下當電極尺寸縮小到一定程度時,空氣放電機理與長間隙空

    掃描俄歇微探針(SAM)

       掃描俄歇微探針(SAM);    基本功能:   (1)可進行樣品表面的微區選點分析(包括點分析,線分析和面分析);   (2)可進行深度分析;   (3)化學價態研究    用途:   納米薄膜材料,微電子材料的表 面和界面研究及摩擦化學研究。

    掃描俄歇微探針(SAM)

       掃描俄歇微探針(SAM);    基本功能:   (1)可進行樣品表面的微區選點分析(包括點分析,線分析和面分析);   (2)可進行深度分析;   (3)化學價態研究    用途:   納米薄膜材料,微電子材料的表 面和界面研究及摩擦化學研究。

    掃描探針顯微鏡和掃描探針顯微鏡的光軸調整方法

    掃描探針顯微鏡和掃描探針顯微鏡的光軸調整方法。提供能夠使用配置于掃描探針顯微鏡的物鏡來自動地進行光杠桿的光軸調整的掃描探針顯微鏡和其光軸調整方法。是一種掃描探針顯微鏡(100),所述掃描探針顯微鏡(100)具備:懸臂支承部(11),以規定的安裝角(θ)安裝懸臂(4);移動機構(21),對懸臂的位置進

    掃描探針顯微鏡及掃描方法

    掃描探針顯微鏡和掃描方法,其能減小或避免因探針尖與樣品碰撞而造成的損害,縮短測量時間,提高生產力和測量精確度,不受粘附水層的影響收集樣品表面的觀測數據,如形貌數據。顯微鏡具有振動探針尖的振動單元、探針尖與樣品表面接近或接觸時收集觀測數據的觀測單元、探針尖與樣品表面接近或接觸時檢測探針尖振動狀態變化的

    掃描探針顯微鏡概述

      掃描探針顯微鏡以其分辨率極高(原子級分辨率)、實時、實空間、原位成像,對樣品無特殊要求(不受其導電性、干燥度、形狀、硬度、純度等限制)、可在大氣、常溫環境甚至是溶液中成像、同時具備納米操縱及加工功能、系統及配套相對簡單、廉價等優點,廣泛應用于納米科技、材料科學、物理、化學和生命科學等領域,并取得

    掃描探針顯微鏡簡介

      掃描探針顯微鏡(Scanning Probe Microscope,SPM)是掃描隧道顯微鏡及在掃描隧道顯微鏡的基礎上發展起來的各種新型探針顯微鏡(原子力顯微鏡AFM,激光力顯微鏡LFM,磁力顯微鏡MFM等等)的統稱,是國際上近年發展起來的表面分析儀器,是綜合運用光電子技術、激光技術、微弱信號檢

    掃描探針顯微鏡的特點

    掃描探針顯微鏡具有極高的分辨率;得到的是實時的、真實的樣品表面的高分辨率圖像;使用環境寬松等特點。選擇好的掃描探針顯微鏡推薦Park NX-Hivac。Park NX-Hivac通過為失效分析工程師提供高真空環境來提高測量敏感度以及原子力顯微鏡測量的可重復性。與一般環境或干燥N2條件相比,高真空測量

    超高真空掃描探針顯微鏡

      超高真空掃描探針顯微鏡是一種用于材料科學、物理學領域的分析儀器,于2011年12月15日啟用。  1、技術指標  工作溫度為室溫,樣品粗定位范圍>6 mm×6 mm,單管掃描范圍>6 μm×6 μm×2 μm。STM模式下可實現Si(1 1 1)和Au(1 1 1)表面的原子分辨;AFM接觸模式

    石英音叉掃描探針顯微鏡

    ? ? 石英音叉是一種諧振頻率穩定、品質因數高的時基器件,其音叉臂的諧振參數(諧振振幅和諧振頻率)對微力極其敏感。利用石英音叉對外力的敏感性,與鎢探針結合,構成一種新型的表面形貌掃描測頭。該測頭與xyz壓電工作臺結合,利用測頭音叉臂諧振頻率對掃描微力的敏感性,研制基于相位反饋控制的掃描探針顯微鏡。?

  • <noscript id="yywya"><kbd id="yywya"></kbd></noscript>
  • 东京热 下载