線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是一個環狀DNA分子。由于一個細胞里有許多個線粒體,而且一個線粒體里也有幾份基因組拷貝,所以一個細胞里也就有許多個線粒體基因組。不同物種的線粒體基因組的大小相差懸殊。......閱讀全文
線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是一個
線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是
線粒體基因組的簡介
線粒體是真核細胞的一種細胞器,有它自己的基因組,編碼細胞器的一些蛋白質。除了少數低等真核生物的線粒體基因組是線狀DNA分子外(如纖毛原生動物Tetrahymena pyniform和Paramecium aurelia以及綠藻Clam ydoomonas rein—hardtia 等),一般都是
線粒體基因組的原理簡介
線粒體基因組能夠單獨進行復制、轉錄及合成蛋白質,但這并不意味著線粒體基因組的遺傳完全不受核基因的控制。線粒體自身結構和生命活動都需要核基因的參與并受其控制,說明真核細胞內盡管存在兩個遺傳系統,一個在細胞核內,一個在細胞質內,各自合成一些蛋白質和基因產物,造成了細胞核和細胞質對遺傳的相互作用;但是
線粒體基因組的疾病關系簡介
人線粒體DNA(mtDNA),共包含37個基因,這37個基因中有22個編碼轉移核糖核酸(tRNA)、2個編碼核糖體核糖核酸(12S和16S rRNA),13個編碼多肽。 對于可疑線粒體病的患者來說,理想的遺傳學診斷方法是發現導致線粒體結構和功能缺陷的相關基因突變。這些基因突變可能在mtDNA上
線粒體基因組的概念
線粒體是真核細胞的一種細胞器,有它自己的基因組,這些基因組統稱為線粒體基因組。線粒體內的DNA,可參與蛋白質的合成,轉錄,與復制,具有較高的研究價值。
線粒體基因組的原理
線粒體基因組能夠單獨進行復制、轉錄及合成蛋白質,但這并不意味著線粒體基因組的遺傳完全不受核基因的控制。線粒體自身結構和生命活動都需要核基因的參與并受其控制,說明真核細胞內盡管存在兩個遺傳系統,一個在細胞核內,一個在細胞質內,各自合成一些蛋白質和基因產物,造成了細胞核和細胞質對遺傳的相互作用;但是
線粒體基因組的基本性質
與核基因組相比,線粒體基因組有如下性質:所有的基因都位于一個單一的環狀DNA分子上。遺傳物質不為核膜所包被。DNA不為蛋白質所壓縮。基因組沒有包含那么多非編碼區域(調控區域或“內含子”)。一些密碼子與通用密碼子不同。相反,與一些紫色非硫細菌相似。一些堿基為兩個不同基因的一部分(重疊基因):某堿基作為
線粒體基因組的DNA相關介紹
與細胞核DNA相比,mtDNA作為生物體種系發生的“分子鐘”(molecular clock)有其自身的優點:①突變率高,是核DNA的10倍左右,因此即使是在近期內趨異的物種之間也會很快地積累大量的核苷酸置換,可以進行比較分析;②因為精子的細胞質極少,子代的mtDNA基本上都是來自卵細胞,所以m
線粒體基因組的大小解釋
已知的是哺乳動物的線粒體基因組最小,果蠅和蛙的稍大,酵母的更大,而植物的線粒體基因組最大。人、小鼠和牛的線粒體基因組全序列已經測定,都是16.5 kb左右。每個細胞里有成千上萬份線粒體基因組DNA拷貝。果蠅和蛙的細胞里有多少個線粒體以及每個線粒體有多少份DNA拷貝,還沒有準確的數字。估計線粒體DNA
關于線粒體DNA的簡介
線粒體DNA是線粒體中的遺傳物質,線粒體能為細胞產生能量(ATP),是在細胞線粒體內發現的脫氧核糖核酸特殊形態。線粒體是為細胞提供能量(ATP)的細胞器。一個線粒體中一般有多個DNA分子。 它們攜帶著自己的DNA——mtDNA,而這些基因的突變能引起線粒體疾病。雖然疾病癥狀是多變的,但大腦、肌
關于線粒體基質的簡介
線粒體基質-內膜和嵴包圍著的線粒體內部空間, 含有很多蛋白質和脂類,催化三羧酸循環中脂肪酸和丙酮酸氧化的酶類, 也都存在于基質中。線粒體有內外兩層膜,內膜的某些部位向線粒體的內腔折疊形成嵴,嵴的周圍充滿了液態的基質----這些基質就是線粒體基質,其中含有許多有氧呼吸有關的酶.是有氧呼吸的主要場所
關于線粒體基因組的大小的介紹
已知的是哺乳動物的線粒體基因組最小,果蠅和蛙的稍大,酵母的更大,而植物的線粒體基因組最大。人、小鼠和牛的線粒體基因組全序列已經測定,都是16.5 kb左右。每個細胞里有成千上萬份線粒體基因組DNA拷貝。果蠅和蛙的細胞里有多少個線粒體以及每個線粒體有多少份DNA拷貝,還沒有準確的數字。估計線粒體D
線粒體腦肌病的簡介
線粒體是真核細胞內一種重要和獨特的細胞器,被稱為細胞內的“動力工廠”。線粒體通過氧化磷酸化作用,進行能量轉換,為細胞進行各種生命活動提供所需的能量。而且在細胞凋亡及某些代謝途徑中也起重要作用。線粒體是細胞內最易受損傷的一個敏感的細胞器,它可顯示細胞受損傷的程度。線粒體DNA (mitochond
線粒體腦肌病的簡介
線粒體是真核細胞內一種重要和獨特的細胞器,被稱為細胞內的“動力工廠”。線粒體通過氧化磷酸化作用,進行能量轉換,為細胞進行各種生命活動提供所需的能量。而且在細胞凋亡及某些代謝途徑中也起重要作用。線粒體是細胞內最易受損傷的一個敏感的細胞器,它可顯示細胞受損傷的程度。線粒體DNA (mitochond
線粒體核糖體的簡介
線粒體核糖體是存在于真核細胞線粒體內的一種核糖體,負責完成線粒體這種細胞器中進行的翻譯過程。線粒體核糖體的沉降系數介于55S-56S之間,是已發現的沉降系數最小的核糖體。不同生物的線粒體核糖體在組成與物理化學性質等方面的差異均比細胞質核糖體的大。
線粒體核糖體的簡介
線粒體核糖體是存在于真核細胞線粒體內的一種核糖體,負責完成線粒體這種細胞器中進行的翻譯過程。線粒體核糖體的沉降系數介于55S-56S之間,是已發現的沉降系數最小的核糖體。不同生物的線粒體核糖體在組成與物理化學性質等方面的差異均比細胞質核糖體的大。
PNAS:為什么線粒體保留自身基因組
這聽起來像科幻小說,認為人體內的每一個細胞都是由一個具有基因組的微小細胞器所占據,我們與其存在共 生關系。但是在現實中,真核生物的生命依賴于線粒體,它以三磷酸腺苷的形式給細胞提供能量(ATP)。幾 千年來,線粒體的基因組是在最小基因含量的選擇下進化的,但是研究者們一直無法確定“為什么有些線粒體基
植物和哺乳動物線粒體基因組的差異
植物細胞植物細胞的線粒體基因組的大小差別很大,最小的為100kb左右,大部分由非編碼的DNA序列組成,且有許多短的同源序列,同源序列之間的DNA重組會產生較小的亞基因組環狀DNA,與完整的“主”基因組共存于細胞內,因此植物線粒體基因組的研究更為困難。哺乳動物哺乳動物的線粒體基因DNA沒有內含子,幾乎
相分離調控線粒體基因組空間秩序的模型
中國科學院廣州生物醫藥與健康研究院研究員劉興國團隊聯合清華大學、南方科技大學、北京大學、香港中文大學等科研人員,研究發現線粒體基因組與其結合蛋白,利用生物分子最基礎的自發聚集的相分離性質,調控線粒體類核的組裝以及轉錄的復雜過程,構建了首個相分離調控線粒體基因組結構與功能的模型。相關研究10月28日在
北京基因組所揭示線粒體基因組氧化損傷修復分子機制
線粒體是真核生物細胞主要的能量代謝場所,其中呼吸鏈氧化磷酸化過程伴隨有高水平的氧自由基(ROS)的產生。線粒體基因組缺乏組蛋白結合保護,所以容易受到ROS攻擊而發生損傷,其突變的累積已證實與多種人類疾病(如神經退行性病變、糖尿病、心血管疾病和癌癥等)的發生密切相關。有關核基因組DNA損傷修復分子
葉綠體和線粒體基因組變異檢測獲突破
近日,《公共科學圖書館―綜合》發表了中國農業科學院油料作物研究所博士后曾長立與合作導師伍曉明研究建立的能高通量檢測葉綠體和線粒體基因組遺傳變異的新方法。 據曾長立介紹,葉綠體和線粒體基因組作為植物細胞質基因組,對光合作用、呼吸作用等重要生命過程具有重要意義。 研究葉綠體和線粒體基因組
線粒體全基因組測定揭示家雞馴化史
為探討家雞的馴化歷史,中科院昆明動物研究所的研究人員發現了家雞較為清晰的母系遺傳背景信息。該研究成果日前在線發表于國際期刊《遺傳》。 據介紹,從肉蛋供應到供人娛樂,家雞在人類生產生活中扮演著重要角色。在被馴化之后,家雞跟隨人類擴散到世界各地,成為飼養最為廣泛的家禽。而家雞的馴化問題,自達爾
基因治療線粒體肌病的簡介
基因治療策略包括降低突變型mtDNA/野生型mtDNA的比例、使用錯位表達及異質表達、輸入其他同源性基因以及利用限制性內切酶修復突變型mtDNA等。如用人胞質體(含正常線粒體無細胞核的細胞)對缺陷細胞(含缺陷mtRNA,呼吸鏈功能減退的細胞)進行基因補救治療,能成功地使缺陷細胞呼吸鏈功能恢復正常
線粒體通透性轉換孔的簡介
線粒體通透性轉換孔(PT)的分子結構尚不清楚。最新研究表明,線粒體磷酸鹽載體作為線粒體載體家族中的一類,是PT的重要組成,而親環蛋白D,電壓依賴性離子通道與腺嘌呤核苷酸轉位酶則參與PT開放的調節。PT開放與細胞凋亡密切相關,但研究表明,二者之間并不存在必然關聯。現針對PT與磷酸鹽載體及與凋亡等之
線粒體呼吸測定儀的功能簡介
1、高度整合的控制器。功能強大的控制軟件,控制溫度和攪拌子轉速 2、自動采集數據,自動計算出呼吸速率 3、整合式半導體控溫裝置精確控溫 4、可以8臺系統聯用,同時監測8個反應室中O2濃度的變化 5、可與OXY/PHA離子選擇pH電極聯用,同時檢測反應液中氧濃度和H濃度
簡介抗線粒體抗體的臨床意義
異常結果:由于抗M1抗體即抗心磷脂抗體,目前不列入抗線粒抗體中。抗M2見于90%的PBC患者,常用作該病的重要實驗室診斷指標,但AMA與PBC的病期、疾病嚴重程度、治療效果均無相關性。除PBC外,抗M2也見于慢性活動性肝炎(CAH)、HBsAg陰性的肝病。抗M2 AMA見于吡唑酮(pyrazol
進化新方式?線粒體DNA會插入我們的基因組
劍橋大學和倫敦瑪麗女王大學的研究人員表明,線粒體DNA也會出現在一些癌癥DNA中,這表明它就像一塊創可貼,試圖修復我們遺傳密碼的損傷。這項研究成果于10月5日發表在《Nature》雜志上。 線粒體是細胞內的微小細胞器,它們像電池一樣,以ATP分子的形式為細胞提供能量。每個線粒體都有自己的DNA
提出相分離調控線粒體基因組空間秩序的模型
中國科學院廣州生物醫藥與健康研究院研究員劉興國團隊聯合清華大學、南方科技大學、北京大學、香港中文大學等科研人員,研究發現線粒體基因組與其結合蛋白,利用生物分子最基礎的自發聚集的相分離性質,調控線粒體類核的組裝以及轉錄的復雜過程,構建了首個相分離調控線粒體基因組結構與功能的模型。相關研究1
細胞質雄性不育與線粒體基因組
根據研究,線粒體基因組的變異重組與 CMS 的關系最為密切。通過對不同材料的 CMS 系和保持系線粒體 DNA 的 RFLP、RAPD、AFLP 等多態性分析表明,CMS 系和保持系在線粒體基因組結構上具有顯著差異。這可能與植物線粒體基因組自身的特點有關。與動物和真菌的線粒體基因組比起來,植物線粒體