關于綠色熒光蛋白的發展歷史介紹
1962年,已經有文獻報道科學家從多管水母屬的發光型水螅水母(luminous hydromedusan Aequorea)中提取到了具有生物發光性質的蛋白質也就是綠色熒光蛋白。到了上世紀70年代,對生物發光的現象才有了一些新的進展。有科學家研究了多管水母屬生物發光系統的分子內能量轉移。到了九十年代初,科學家才克隆到GFP的cDNA,并且研究了其表達的氨基酸序列,發現 gfp 10 cDNA 編碼238個氨基酸肽段。研究A. victoria GFP 基因克隆,發現GFP基因上面有三個限制性酶切位點。這對后續科學家了解其結構有很大的幫助。 1994年2月,M. Chalfie 等人創造性的將GFP分別在Escherichia coli和Caenorhabditis elegans細胞中表達,并得出結論由于GFP發光并不需要其他底物或者共同作用因子,所以GFP的表達可以用來在活體中監測基因表達和蛋白質的定位。從那以后的一段時......閱讀全文
綠色熒光蛋白簡介
綠色螢光蛋白(Green fluorescent protein;簡稱GFP),由下村脩等人于1962年在維多利亞多管發光水母中發現,其基因所產生的蛋白質,在藍色波長范圍的光線激發下,會發出綠色螢光,整個發光的過程中還需要冷光蛋白質水母素的幫助,冷光蛋白質與鈣離子(Ca2+)可產生交互作用。2008
蛋白質的內源熒光與熒光探針
利用熒光光譜法研究蛋白質一般有兩種方法。一是測定蛋白質分子的自身熒光(內源熒光),另一種是當蛋白質本身不能發射熒光時,通過非共價吸附或共價作用向蛋白質分子的特殊部位引入外源熒光(也稱熒光探針),然后測定外源熒光物質的熒光。 ?蛋白質的內源熒光 含有芳香族氨基酸(色氨酸(tryptophan?,Trp
綠色熒光蛋白基因與紅色熒光蛋白基因是同源的嗎
綠色熒光蛋白基因與紅色熒光蛋白基因是同源的(1)在該實驗中,綠色熒光蛋白基因是目的基因.(2)③是將目的基因導入受體細胞的過程,當受體細胞是動物細胞時,采用最多也最有效的方法是顯微注射技術.(3)GFP基因可以作為標記基因,標記基因的作用是鑒定受體細胞中是否含有目的基因.(4)動物細胞培養時,其培養
GFP:熒光蛋白的起源
作者:?羅輯科學?? ? ? ?綠色熒光蛋白(簡稱GFP),是一個由約238個氨基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色熒光。GFP的熒光非常穩定,在激發光照射下,其抗光漂白能力比熒光素強很多。因此GFP及其變種被廣泛地用作分子標記;此外,GFP還被用作砷和一些重金屬的傳感器。? ?
GFP:熒光蛋白的起源
綠色熒光蛋白(簡稱GFP),是一個由約238個氨基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色熒光。GFP的熒光非常穩定,在激發光照射下,其抗光漂白能力比熒光素強很多。因此GFP及其變種被廣泛地用作分子標記;此外,GFP還被用作砷和一些重金屬的傳感器。 1962年,下村脩和約翰遜在一
關于熒光蛋白的簡介
熒光蛋白在某種定義下可以說是革新了生物學研究——運用熒光蛋白可以觀測到細胞的活動,可以標記表達蛋白,可以進行深入的蛋白質組學實驗等等。特別是在癌癥研究的過程中,由于熒光蛋白的出現使得科學家們能夠觀測到腫瘤細胞的具體活動,比如腫瘤細胞的成長、入侵、轉移和新生。
GFP:熒光蛋白的起源
? ? ?綠色熒光蛋白(簡稱GFP),是一個由約238個氨基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色熒光。GFP的熒光非常穩定,在激發光照射下,其抗光漂白能力比熒光素強很多。因此GFP及其變種被廣泛地用作分子標記;此外,GFP還被用作砷和一些重金屬的傳感器。? ? ? ?1962年,下村
綠色熒光蛋白GFP性質
GFP熒光極其穩定,在激發光照射下,GFP抗光漂白(Photobleaching)能力比熒光素(fluorescein)強,特別在450~490nm藍光波長下更穩定。 GFP需要在氧化狀態下產生熒光,強還原劑能使GFP轉變為非熒光形式,但一旦重新暴露在空氣或氧氣中,GFP熒光便立即得到恢復。而
什么是綠色熒光蛋白?
綠色熒光蛋白分子的形狀呈圓柱形,就像一個桶,負責發光的基團位于桶中央,因此,綠色熒光蛋白可形象地比喻成一個裝有色素的“油漆桶”。裝在“桶”中的發光基團對藍色光照特別敏感。當它受到藍光照射時,會吸收藍光的部分能量,然后發射出綠色的熒光。利用這一性質,生物學家們可以用綠色熒光蛋白來標記幾乎任何生物分
綠色熒光蛋白的應用
由于熒光蛋白能穩定在后代遺傳,并且能根據啟動子特異性地表達,在需要定量或其他實驗中慢慢取代了傳統的化學染料。更多地,熒光蛋白被改造成了不同的新工具,既提供了解決問題的新思路,也可能帶來更多有價值的新問題。
熒光蛋白的發光原理
生命的顏色在海洋中,棲息著一類美麗而神奇的生物——水母。水母是一類古老的水生無脊椎軟體動物。多數水母擁有顏色絢麗的傘性身軀及自體發光的能力,可散發出點點淡藍色熒光,與搖曳的海水相映成輝,常引人無限遐想。沒有人知道水母發光的能力是如何進化而來的,這些美麗的海洋精靈遍布在世界各地的海洋中,如繁星般點綴著
黃色熒光蛋白的概念
黃色熒光蛋白(Yellow Fluorescent Protein ,YFP)可以看做綠色熒光蛋白的一種突變體,最初來源于維多利亞多管水母( Aequorea victoria)。相對于綠色熒光蛋白,其熒光向紅色光譜偏移,而這主要是由于蛋白203位蘇氨酸變為酪氨酸。其最大激發波長為514 nm,最大
什么是綠色熒光蛋白
綠色熒光蛋白分子的形狀呈圓柱形,就像一個桶,負責發光的基團位于桶中央,因此,綠色熒光蛋白可形象地比喻成一個裝有色素的“油漆桶”。裝在“桶”中的發光基團對藍色光照特別敏感。當它受到藍光照射時,會吸收藍光的部分能量,然后發射出綠色的熒光。利用這一性質,生物學家們可以用綠色熒光蛋白來標記幾乎任何生物分子或
黃色熒光蛋白的應用
像綠色熒光蛋白一樣,YFP是細胞生物學和分子生物學中一種非常常用的報告基因。目前,有三種改良的黃色熒光蛋白: Citrine, Venus, and Ypet。這三種改良的蛋白熒光更亮,更穩定,而且成熟更快,因此應用廣泛。黃色熒光蛋白最常用于熒光共振能量轉移,作為熒光能量的接受體(acceptor)
熒光蛋白的發光原理
綠色熒光蛋白是從水母體內發現的發光蛋白。分子質量為26kda,由238個氨基酸構成,第65~67位氨基酸形成發光團,是主要發光的位置。其發光團的形成不具物種專一性,發出熒光穩定,且不需依賴任何輔因子或其他基質而發光。綠色熒光蛋白基因轉化入宿主細胞后很穩定,對多數宿主的生理無影響,是常用的報道基因。熒
蛋白質的內源性熒光與熒光探針
利用熒光光譜法研究蛋白質一般有兩種方法。一是測定蛋白質分子的自身熒光(內源熒光),另一種是當蛋白質本身不能發射熒光時,通過非共價吸附或共價作用向蛋白質分子的特殊部位引入外源熒光(也稱熒光探針),然后測定外源熒光物質的熒光。 蛋白質的內源熒光 含有芳香族氨基酸(色氨酸(tryptophan
LSCM表達熒光蛋白的組織
表達熒光蛋白的組織經冷凍切片制樣后,可直接封片,觀察并掃描圖像,也可配合使用其它熒光染料進行免疫熒光抗體標記和核染色。同時表達GFP?和?RFP?熒光蛋白的組織切片,如還需作免疫熒光抗體標記,應選擇可以被?633 nm?和?405 nm?波長激光器激發的熒光染料,如?CY5、Alexa fluor
綠色熒光蛋白的功能介紹
綠色熒光蛋白(Green fluorescent protein,簡稱GFP),是一個由約238個氨基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色熒光。雖然許多其他海洋生物也有類似的綠色熒光蛋白,但傳統上,綠色熒光蛋白(GFP)指首先從維多利亞多管發光水母中分離的蛋白質。這種蛋白質最早是由下
綠色熒光蛋白的結構特點
野生型綠色熒光蛋白,最開始是 238 個氨基酸的肽鏈,約 25KDa。然后按一定規則,11 條β-折疊在外周圍成圓柱狀的柵欄;圓柱中,α-螺旋把發色團固定在幾乎正中心處。發色圖被圍在中心,能避免偶極化的水分子、順磁化的氧分子或者順反異構作用與發色團,致使熒光猝滅。熒光是熒光蛋白最特別的特點,而其中的
綠色熒光蛋白的發現過程
1994年,華裔美國科學家錢永健(Roger Yonchien Tsien)開始改造GFP,有多項發現。世界上用的大多數是錢永健實驗室改造后的變種,有的熒光更強,有的黃色、藍色,有的可激活、可變色。到一些不常用做研究模式的生物體內找有顏色的蛋白成為一些人的愛好,現象正如當年在嗜熱生物中找到以后應用廣
綠色熒光蛋白的結構介紹
野生型綠色熒光蛋白,最開始是 238 個氨基酸的肽鏈,約 25KDa。然后按一定規則,11 條β-折疊在外周圍成圓柱狀的柵欄;圓柱中,α-螺旋把發色團固定在幾乎正中心處。發色圖被圍在中心,能避免偶極化的水分子、順磁化的氧分子或者順反異構作用與發色團,致使熒光猝滅。熒光是熒光蛋白最特別的特點,而其中的
綠色熒光蛋白(GFP)的應用
骨架和細胞分裂 Kevin Sullivan's 實驗室 酵母菌內SPB 和微管動力學 酵母菌中肌動蛋白的動力 果蠅中MEI-S332蛋白 果蠅有絲分裂和mRNA運輸 網丙菌屬細胞骨架 RNA剪切因子的核內運輸 網丙菌屬的趨化作用 網丙菌屬中細胞骨架動力和細胞運動 核
綠色熒光蛋白的發現過程
1994年,華裔美國科學家錢永健(Roger Yonchien Tsien)開始改造GFP,有多項發現。世界上用的大多數是錢永健實驗室改造后的變種,有的熒光更強,有的黃色、藍色,有的可激活、可變色。到一些不常用做研究模式的生物體內找有顏色的蛋白成為一些人的愛好,現象正如當年在嗜熱生物中找到以后應用廣
綠色熒光蛋白融合抗體研究
融合抗體 近二十年來,抗體生成技術有了飛速發展,已經從細胞工程抗體(雜交瘤技術一單克隆抗體)發展到了第三代抗體:基因工程抗體,尤其是噬菌體抗體庫技術的出現,解決了人源抗體的研制問題,促進了各種性能優良抗體以及具有多種功能的抗體融合蛋白的開發。單鏈抗體(Single-chain variable
關于綠色熒光蛋白的簡介
綠色熒光蛋白(Green fluorescent protein,簡稱GFP),是一個由約238個氨基酸組成的蛋白質,從藍光到紫外線都能使其激發,發出綠色熒光。雖然許多其他海洋生物也有類似的綠色熒光蛋白,但傳統上,綠色熒光蛋白(GFP)指首先從維多利亞多管發光水母中分離的蛋白質。這種蛋白質最早是
綠色熒光蛋白的應用特點
由于熒光蛋白能穩定在后代遺傳,并且能根據啟動子特異性地表達,在需要定量或其他實驗中慢慢取代了傳統的化學染料。更多地,熒光蛋白被改造成了不同的新工具,既提供了解決問題的新思路,也可能帶來更多有價值的新問題。GFP和它的衍生物的可用性已經徹底重新定義熒光顯微鏡,以及它被用來在細胞生物學和其他生物學科的方
綠色熒光蛋白的發現過程
1994年,華裔美國科學家錢永健(Roger Yonchien Tsien)開始改造GFP,有多項發現。世界上用的大多數是錢永健實驗室改造后的變種,有的熒光更強,有的黃色、藍色,有的可激活、可變色。到一些不常用做研究模式的生物體內找有顏色的蛋白成為一些人的愛好,現象正如當年在嗜熱生物中找到以后應用廣
圖解光誘導熒光蛋白系統
GFP蛋白曾經為蛋白質定位等相關研究帶來革命性的進展,而隨著具有和GFP類似遺傳學特征的光學指示劑蛋白的出現,蛋白質相關的動態研究也將獲得更多的手段和技術,本文詳細介紹了激光誘導熒光系統在蛋白質研究中的應用。 近年來隨著蛋白質學研究的進展,研究人員相繼發現和特異克隆了一些特殊蛋白質。這些蛋
綠色熒光蛋白的基本結構
野生型綠色熒光蛋白,最開始是 238 個氨基酸的肽鏈,約 25KDa。然后按一定規則,11 條β-折疊在外周圍成圓柱狀的柵欄;圓柱中,α-螺旋把發色團固定在幾乎正中心處。發色圖被圍在中心,能避免偶極化的水分子、順磁化的氧分子或者順反異構作用與發色團,致使熒光猝滅。熒光是熒光蛋白最特別的特點,而其中的
綠色熒光蛋白在胞外環境能激發熒光嗎
綠色熒光蛋白在胞外環境能激發熒光嗎綠色熒光蛋的發光機理比熒光素/熒光素酶要簡單得多。一種熒光素酶只能與相對應的一種熒光素合作來發光,而綠色熒光蛋白并不需要與其他物質合作,只需要用藍光照射,就能自己發光。在生物學研究中,科學家們常常利用這種能自己發光的熒光分子來作為生物體的標記。將這種熒光分子通過化學