美科學家結合X射線和顯微鏡進行精細實驗
美國能源部阿貢國家實驗室的科學家若斯近日宣布:他們已經通過同時使用X射線分析和高精度顯微鏡,能夠同時判定物質接近原子級的物理結構和化學構成。這項研究為運用于能源的各種材料開辟了新路徑。 掃描隧道顯微鏡(STM)能讓研究人員在原子級看到更大范圍的不同材料。但是只能大概看見原子在哪里,并不能提供化學或者磁性方面的信息。若斯最近的一項研究彌補了這一缺陷。他帶領的團隊綜合了阿貢實驗室的高級光子源、納米材料中心和電子顯微鏡中心所提供的資源,發明了X射線同步加速器掃描隧道顯微鏡技術。該技術將X射線同步加速器(由高級光子源提供)同STM結合在一起。該團隊曾用一個小銅樣品檢測該技術的局限和優勢。只用加速器達不到STM能檢測到空間分辨率,但是把兩者結合起來就能得到研究者期望的數據。 若斯堅信這項技術能幫助科學家和工程師開發新一代的催化劑、納米磁系統和太陽能電池。對于催化劑,有這種程度的分辨率可以根據個別催化劑顯示活性部位在哪里,而......閱讀全文
X射線顯微鏡原理
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出
美國X射線激光器成功產生第一束X射線
美國勞倫斯伯克利國家實驗室新升級的直線加速器相干光源(LCLS)X射線自由電子激光器(XFEL),成功產生了第一束X射線。此次升級的X射線閃光每秒高達100萬次,是其前身的8000倍,它改變了科學家探索原子尺度超快現象的能力,這些現象對于從量子材料到清潔能源等廣泛應用至關重要,將開創X射線研究的新時
美國X射線激光器成功產生第一束X射線
美國SLAC國家加速器實驗室新升級的直線加速器相干光源(LCLS)X射線自由電子激光器(XFEL),成功產生了第一束X射線。此次升級的X射線閃光每秒高達100萬次,是其前身的8000倍,它改變了科學家探索原子尺度超快現象的能力,這些現象對于從量子材料到清潔能源等廣泛應用至關重要,將開創X射線研究
X-射線顯微鏡的概念
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出發的
X射線顯微鏡的簡介
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出
X射線顯微鏡的定義
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出
重建的美國X射線源迎來新生
在耗資8.15億美元、歷時14個月的重建之后,美國首屈一指的X射線同步加速器—— 一臺用于研究材料和分子原子結構的大型機器,重新煥發了生機。在新的APS內循環著一束比人類頭發還窄的強電子束。圖片來源:ARGONNE NATIONAL LABORATORY據《科學》報道,近日,位于阿貢國家實驗室的新型
X-射線顯微鏡的技術特點
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出發的
X-射線顯微鏡的基本構造
聚焦放大元件常用的聚焦鏡是多層膜反射聚焦鏡和波帶片,成像放大元件是波帶片。1 多層膜反射聚焦鏡多層膜是在基板上重復涂上兩種不同的材料制成的人造一維晶體。通常,一種材料是高原子序數的重金屬(H),另一種是低原子序數的非金屬(L)。這兩個層的厚度之和dH + dL構成這多層膜的重復周期d。dH 和dL
X-射線顯微鏡的成像原理
X 射線顯微鏡的成像原理與光學顯微鏡基本上是一樣的,遵從幾何光學原理,其關鍵部件是成像和放大作用的光學元件,在光學顯微鏡中為透鏡。由于X 射線的波長很短,在玻璃和一般物質界面上的折射率均接近1,故其成像放大元件不能用玻璃透鏡,一般用波帶片。此外,它們同樣利用吸收襯度和位相襯度成像,同樣要求有強光源及
X-射線顯微鏡的功能特點
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出發的
X-射線顯微鏡的成像原理
X 射線顯微鏡的成像原理與光學顯微鏡基本上是一樣的,遵從幾何光學原理,其關鍵部件是成像和放大作用的光學元件,在光學顯微鏡中為透鏡。由于X 射線的波長很短,在玻璃和一般物質界面上的折射率均接近1,故其成像放大元件不能用玻璃透鏡,一般用波帶片。此外,它們同樣利用吸收襯度和位相襯度成像,同樣要求有強光源及
美國開發高精密銅源X射線儀
美國國家標準技術研究院(NIST)利用其開發的最新先進機器形成并精確測量了X射線頻譜。該設備開發與制造費時20年,將幫助科學家制造世界上最精確的材料,可應用在基礎設施和藥物上,同時也確保世界上不同實驗室之間材料測量的可靠性,新的專業精密儀器需要大量的機械創新和理論建模。 NIST新設備形成
磁X射線顯微鏡的相關介紹
同步輻射中所含的輻射均是偏振光,可以是線偏振光,也可以是橢圓或圓偏振光,X 射線也不例外。如果待測物質具有磁性,則具有不成對電子,具有電子自旋磁矩和軌道磁矩。磁矩與不同方向的偏振光的作用是不同的,如用不同方向的圓( 線) 偏振光照射磁性材料,可以得到不同的吸收譜,該性質稱圓( 線) 二色性。
X射線熒光分析顯微鏡的用途
可以快速、無損地對樣品(固體、粉末、液體、多層鍍膜等)的元素組成進行定性、定量分析,還可以通過面掃描功能獲得樣品的元素面分布圖(掃描區域最大可達10 cm×10 cm)。儀器配備的雙真空式設計可以在高靈敏度模式或大氣氛圍模式分析從Na到U的所有元素。可應用于地質礦物、電子電器、生物醫藥、環境、考
X射線顯微鏡的全息顯微術
已經知道,像是依靠吸收襯度( 光的振幅)或位相襯度一種信息來顯現的。而所謂全息,是指同時含有振幅與位相兩種信息。這是Gabor在1948 年提出的。由于記錄介質實際可記錄的信息只能是光強,也即振幅,故需將位相信息轉換成強度來記錄。把光照射到試樣上,試樣以球面波形式將其散射,如有另一束已知振幅與位
X-射線顯微鏡成像與構造介紹
X 射線顯微鏡的成像原理與光學顯微鏡基本上是一樣的,遵從幾何光學原理,其關鍵部件是成像和放大作用的光學元件,在光學顯微鏡中為透鏡。由于X 射線的波長很短,在玻璃和一般物質界面上的折射率均接近1,故其成像放大元件不能用玻璃透鏡,一般用波帶片。此外,它們同樣利用吸收襯度和位相襯度成像,同樣要求有強光源及
X射線顯微鏡的成像與構造
X 射線顯微鏡的成像原理與光學顯微鏡基本上是一樣的,遵從幾何光學原理,其關鍵部件是成像和放大作用的光學元件,在光學顯微鏡中為透鏡。由于X 射線的波長很短,在玻璃和一般物質界面上的折射率均接近1,故其成像放大元件不能用玻璃透鏡,一般用波帶片。 此外,它們同樣利用吸收襯度和位相襯度成像,同樣要求有
X射線顯微鏡的光源的介紹
三類X 射線光源:實驗室X 射線光源(X 射線管)、直線加速器和同步輻射裝置。同步輻射是既近平行又高強度,且波長可調而成為最理想的光源。未見有將直線加速器用于X 射線顯微鏡,實驗室光源有使用的,但不能用焦點在10 mm×1 mm 左右的封閉X 射線管,可以用高功率的旋轉陽極X 射線管。另外,可用
美國發射高能X射線太空望遠鏡
美國航天局6月13日從太平洋地區的馬紹爾群島發射了一顆高能X射線太空望遠鏡,用于觀測黑洞等宇宙天體。 這顆望遠鏡全稱為“核光譜望遠鏡陣列”(簡稱“核星”)。美國東部時間11時(北京時間23時),“核星”及其運載火箭由一架飛機運載至空中,約一小時后,二者被拋下飛機,自由
美國KEVEX公司8000型x射線能譜儀
?8000型X射線能譜儀主要做能量分散X射線分析,可用于冶金、電子、地球化學勘探、化工、石油、生物醫學等許多領域。儀器由X射線探測器,分析儀,小型計算機、大容量存貯器,顯示器,鍵盤和軟件構成。?
X射線顯微鏡的透射式X相關內容
用波帶片作為聚光鏡、顯微波帶片作為成像放大物鏡、CCD 為探測器, 分辨力可達10 nm。將樣品連上了制冷裝置( 氦氣)、轉動機構,并使CCD 與計算機連接,則可做斷層掃描(CT),并從屏幕上直接觀察CT 圖。 水窗: 水窗是指從波長2.3 nm 至4.4 nm的一個波段范圍。用此范圍的X 射
X射線熒光(XRF):理解特征X射線
什么是XRF? X射線熒光定義:由高能X射線或伽馬射線轟擊激發材料所發出次級(或熒光)X射線。這種現象廣泛應用于元素分析。 XRF如何工作? 當高能光子(X射線或伽馬射線)被原子吸收,內層電子被激發出來,變成“光電子”,形成空穴,原子處于激發態。外層電子向內層躍遷,發射出能量等于兩級能
X-射線顯微鏡的功能結構特點
X 射線顯微鏡是X 射線成像術的一種,也是顯微成像技術,即將微觀的、肉眼無法分辨看出的結構、圖形放大成像以便觀察研究的器械。X 射線成像的襯度原理、設備的構造與主要組成部件( 如X射線源、探測器等),但主要是從宏觀物體的成像( 如人體器管的醫學成像、機械制品的缺陷探傷、機場車站的安全檢查等) 出發的
概述X射線顯微鏡的成像與構造
X 射線顯微鏡的成像原理與光學顯微鏡基本上是一樣的,遵從幾何光學原理,其關鍵部件是成像和放大作用的光學元件,在光學顯微鏡中為透鏡。由于X 射線的波長很短,在玻璃和一般物質界面上的折射率均接近1,故其成像放大元件不能用玻璃透鏡,一般用波帶片。 此外,它們同樣利用吸收襯度和位相襯度成像,同樣要求有
為什么X射線不能制出顯微鏡
有X射線顯微鏡的,X射線顯微鏡在生物樣品的研究中,應用X射線進行樣品觀察的有三類:(1)用軟X射線的接觸式顯微射線攝影(contact micro-radiography),(2)用兩個磁透鏡系統的投影式顯微射線攝影(projection mic-ro-radiography),(3)用細的X射線流
軟X射線源上X射線能譜與X射線能量的測量
本文介紹了國內首次利用針孔透射光柵譜儀對金屬等離子體Z箍縮X射線源能譜的測量結果及數據處理方法。同時用量熱計對該源的單脈沖X射線能量進行了測量并討論了其結果。
X射線管中X射線的產生原理
實驗室中X射線由X射線管產生,X射線管是具有陰極和陽極的真空管,陰極用鎢絲制成,通電后可發射熱電子,陽極(就稱靶極)用高熔點金屬制成(一般用鎢,用于晶體結構分析的X射線管還可用鐵、銅、鎳等材料).用幾萬伏至幾十萬伏的高壓加速電子,電子束轟擊靶極,X射線從靶極發出.
X射線治療
X射線應用于治療[7],主要依據其生物效應,應用不同能量的X射線對人體病灶部分的細胞組織進行照射時,即可使被照射的細胞組織受到破壞或抑制,從而達到對某些疾病,特別是腫瘤的治療目的。
X射線診斷
X射線應用于醫學診斷[6],主要依據X射線的穿透作用、差別吸收、感光作用和熒光作用。由于X射線穿過人體時,受到不同程度的吸收,如骨骼吸收的X射線量比肌肉吸收的量要多,那么通過人體后的X射線量就不一樣,這樣便攜帶了人體各部密度分布的信息,在熒光屏上或攝影膠片上引起的熒光作用或感光作用的強弱就有較大