科研人員開發出高效植物mRNA遞送系統
基因組編輯技術在農業領域的應用推動了作物改良,但以DNA形式遞送基因編輯工具的方式存在外源DNA整合風險和脫靶效應。近年來,無外源DNA殘留的基因組編輯遞送技術備受關注。盡管基于核糖核蛋白的遞送策略在小麥等作物中實現了T0代基因敲除,但其復雜的制備與操作限制了應用。相比之下,mRNA遞送策略具有制備靈活、可大規模生產的優勢,可為基因編輯提供高效且安全的替代方案。2016年,中國科學院遺傳與發育生物學研究所高彩霞研究組建立了基因槍介導的mRNA遞送方法,在T0代小麥中獲得無外源DNA整合的基因敲除突變體。當前,植物中的mRNA遞送系統效率較低,且在精準基因編輯如堿基編輯和引導編輯方面的應用鮮有報道。近日,高彩霞研究組通過優化體外轉錄mRNA(IVT)的翻譯效率與遞送穩定性,開發了新型基因槍介導的mRNA遞送系統v2_TMV/DEN2,提高了植物基因編輯效率,并在植物中實現了高效的C-to-T和A-to-G堿基編輯。該研究系統性優化......閱讀全文
首個植物基因編輯安全證書!
4日,從山東舜豐生物科技有限公司(以下簡稱舜豐生物)獲悉,農業農村部發布《2023年農業用基因編輯生物安全證書批準清單》,下發全國首個植物基因編輯安全證書,該證書由舜豐生物獲得。 基因編輯是世界生物育種領域的前沿技術。與轉基因不同,基因編輯育種僅對作物自身基因進行修飾,并不轉入其他物種的基因,
單堿基編輯系統在植物中建立mRNA剪接操控新方法
mRNA前體的剪接是高等生物體內基因轉錄后加工的重要過程,傳統mRNA的剪接遵循“GU-AG”法則,即主要剪接體包含三個保守的剪接位點,即位于內含子5’端的“GU”、3’端的“AG”和靠近3’端的分支點“A”。剪接體通過選擇一種或多種剪接位點可將mRNA前體加工為一種或多種成熟的mRNA,即組成
動植物的基因編輯,在爭議中前行
早在公元前12000年,人們就開始種植農作物。他們逐漸開始懂得挑選最好的那一株,這標志著農作物改良的開始。農作物改良,從來都是一個漫長而繁瑣的過程,而如今,科學家能夠快速輕松地實現。 這多虧了一種被譽為“基因剪刀”的CRISPR技術。它是一種靈活高效的基因組編輯工具,能夠對幾乎任何物種的基因組
浙大:RNA編輯阻止RISC識別靶標mRNA
MicroRNAs(miRNAs)結合Ago形成RNA誘導沉默復合體,通過沉默靶mRNA調控基因表達。miRNA的RNA編輯可能影響miRNA的加工,Ago復合物的組裝,以及靶mRNA的結合。然而,組裝進Ago復合物的被編輯的miRNA的功能,還沒有被深入研究過。 浙江大學生命科學學院章曉波教
基因組編輯調控植物內源基因翻譯效率實驗流程發布
上游開放閱讀框uORF廣泛存在于動植物基因的5’非翻譯區,通常能夠抑制下游主開放閱讀框pORF的翻譯。中國科學院遺傳與發育生物學研究所高彩霞研究組率先利用CRISPR/Cas9技術對uORF進行編輯,發現能夠顯著提高目標基因的翻譯效率,建立了利用基因組編輯調控內源基因蛋白質翻譯效率的新方法,相關
基因組編輯調控植物內源基因翻譯效率的實驗流程
上游開放閱讀框uORF廣泛存在于動植物基因的5’非翻譯區,通常能夠抑制下游主開放閱讀框pORF的翻譯。中國科學院遺傳與發育生物學研究所高彩霞研究組率先利用CRISPR/Cas9技術對uORF進行編輯,發現能夠顯著提高目標基因的翻譯效率,建立了利用基因組編輯調控內源基因蛋白質翻譯效率的新方法,相關成果
基因編輯技術給植物基因結構變異研究帶來新機遇
植物基因組結構變異(Structural variations, SVs)包括基因插入/缺失變異和拷貝數變異,與單核苷酸多態性和表觀遺傳差異一起構成種內和種間可遺傳表型的多樣性。了解SVs在植物表型變異中的作用對于植物育種工作者生產改良品種具有重要意義。但早期基因技術的低分辨率和低效的方法限制了
李博文等開發新型LNP載體,可高效mRNA遞送及基因編輯
先天性肺部疾病,例如表面活性蛋白缺乏癥、囊性纖維化、α-1抗胰蛋白酶缺乏癥等等,會導致終身發病甚至是死亡。雖然這些疾病的遺傳機制已經被深入研究,但仍然缺乏有效的治療方案。最近,可吸入式mRNA遞送平臺備受制藥業和學術界的關注。這種平臺可以提供非侵入性、直接進入肺上皮細胞和肺泡的RNA藥物,在應用
基因編輯技術可以編輯所有基因嗎
即便當前不能,以后會能的。基因編輯技術指能夠讓人類對目標基因進行“編輯”,實現對特定DNA片段的敲除、加入等。在過去幾年中, 以ZFN (zinc-finger nucleases)和TALEN (transcription activator-like effector nucleases)為代表
Cell子刊:mRNA編輯的全局調控子
轉錄成為mRNA的基因組遺傳信息,需要先經過加工,然后再翻譯成為生物所需的蛋白質。現在,加州大學和印第安納大學的研究人員,發現了一個能夠廣泛調控mRNA編輯的重要蛋白。這項研究于二月六日發表在Cell旗下的Cell Reports雜志上。 這一調控機制有助于解釋,為何在從海葵到人類的細
李家洋等提出植物基因組編輯監管框架
CRISPR/Cas9是靶向基因變化的一種新方法。與其他方法一起,構成了所謂的基因組編輯工具箱的一部分。目前,基因組編輯主要討論的是醫學應用,相繼有使用基因組編輯治療人類疾病的研究出現,例如:CRISPR基因編輯助力肺癌治療;華人女學者用CRISPR技術改善遺傳性失明;我科學家用CRISPR糾正
植物組織mRNA的提取方法
實驗概要本實驗介紹了植物組織mRNA的提取方法。實驗原理由于mRNA末端含有多poly(A) ,當總RNA流徑oligo(dT)纖維素時,在高鹽緩沖液作用下,mRNA被特異的吸附在oligo(dT)纖維素柱上,在低鹽濃度或蒸餾水中,mRNA可被洗下,經過兩次oligo(dT)纖維素柱,可得到較純的m
基因組編輯調控植物內源基因翻譯效率的實驗流程公布
上游開放閱讀框uORF廣泛存在于動植物基因的5’非翻譯區,通常能夠抑制下游主開放閱讀框pORF的翻譯。中國科學院遺傳與發育生物學研究所高彩霞研究組率先利用CRISPR/Cas9技術對uORF進行編輯,發現能夠顯著提高目標基因的翻譯效率,建立了利用基因組編輯調控內源基因蛋白質翻譯效率的新方法,相關
BEX電轉化儀高效轉染mRNA入卵助力CRISPR/Cas9基因編輯
BEX電轉化儀高效轉染mRNA入卵助力CRISPR/Cas9基因編輯摘要近期,CRISPR/Cas9系統被廣泛地應用于突變體小鼠的構建,但是借助于微注射方法很大程度上限制了基因編輯于高通量上的應用。這篇文章中,我們闡述了一個簡單,高效,大規模的基因編輯方法:即借助于電轉染將RNAs轉入卵,而不是通過
我科研團隊取得植物基因定點編輯技術新進展
中國農科院作物科學研究所玉米分子育種技術和應用創新團隊在植物基因定點刪除與替換基因編輯技術研究方面取得新進展,成功實現在植物基因組上對目標基因進行刪除或替換——該成果于近期在線發表在英國《自然》雜志出版集團旗下的子刊《科學報告》上。 據介紹,基因編輯技術可實現對受體基因組目標基因進行精確的敲除
科研人員建立植物基因組引導編輯技術體系
基因組編輯技術可以定向修飾植物基因組,從而大大加速植物育種的進程,是實現作物精準育種的重要技術突破。然而,作物的許多重要農藝性狀是由基因組中的單個或少數核苷酸的改變或突變造成的。基于CRISPR/Cas系統的基因組編輯,可利用外源修復模板通過同源重組介導的修復方式(HDR)實現目標基因特定核苷酸
植物基因組“剪刀”-被成功打造-可編輯基因組任意位置
中科院上海植物逆境生物學研究中心朱健康課題組通過模仿和改造微生物中的一種抵御外源侵染的防護機制,成功開發出能對植物基因組進行精確定點修飾的技術,從而使高效植物分子改良性狀成為可能。這一適用于植物的CRISPR-Cas技術就像一把剪刀,可以對基因組中任意感興趣的位置進行編輯,它的成功開發將革命性地改變
遺傳發育所在植物基因組編輯方法研究中取得進展
基因組編輯技術是最新發展起來的植物基因功能研究及定向育種的重要手段。在植物中實現基因組編輯的常規方法是將序列特異性核酸酶(如CRISPR/Cas9)的編碼DNA轉化植物細胞,穩定表達進而實現對目的基因的定點編輯。這種情況下,CRISPR載體整合在植物染色體中,需通過后代分離獲得不含CRISPR/
微生物所等發表植物基因組編輯研究綜述
序列特異性核酸酶使得基因組編輯成為可能,快速推動了基礎和應用生物學的發展。CRISPR-Cas9系統自出現以來,作為可轉化植物的基因組編輯工具已得到廣泛應用。CRISPR-Cas9對基因組靶位點進行定向切割,造成DNA雙鏈斷裂。DNA雙鏈斷裂主要通過兩種高度保守的機制進行修復,即非同源末端連接(
Science倡議利用基因編輯技術提高食品安全和植物育種
一個國際研究小組最近在《Science》發表了一篇前瞻性報道:新植物育種技術可以顯著促進糧食安全和可持續發展。尤其是基因編輯技術,例如CRISPR/Cas,可以幫助農業提高生產力和環境友好度。研究人員倡議,應支持并負責地使用這些新技術。 “過去幾十年,植物育種和其他農業技術對減少全球饑餓作出了
遺傳發育所在植物基因組編輯方法研究中取得進展
基因組編輯技術是最新發展起來的植物基因功能研究及定向育種的重要手段。在植物中實現基因組編輯的常規方法是將序列特異性核酸酶(如CRISPR/Cas9)的編碼DNA轉化植物細胞,穩定表達進而實現對目的基因的定點編輯。這種情況下,CRISPR載體整合在植物染色體中,需通過后代分離獲得不含CRISPR/
Nat-Biotechnol:高彩霞團隊開發植物基因組引導編輯技術
許多遺傳和育種研究表明,點突變和插入/缺失(插入和缺失, indel)可以改變農作物的優良性狀。盡管核酸酶啟動的同源介導修復(homology-directed repair, HDR)可以產生這種變化,但它受到效率低的限制。堿基編輯器是用于進行堿基轉換的強大工具,但不能用于進行堿基顛換、插入或
什么是基因編輯
"公眾對轉基因擔心的并不是基因技術,關鍵是轉基因的“轉”,現在通過基因測序研究已發展出基因編輯技術,可根據需要對原來的基因進行重新編輯,它可以不轉任何新的基因,也能產生很好效果。中國今后將在進一步開展轉基因研究的同時,積極推動基因編輯技術研究"。大媽連基因編輯都知道,真是厲害啊。既然提到這個,我就來
基因編輯crispr原理
ZFNZFN,即鋅指核糖核酸酶,由一個 DNA 識別域和一個非特異性核酸內切酶構成。DNA 識別域是由一系列 Cys2-His2鋅指蛋白(zinc-fingers)串聯組成(一般 3~4 個),每個鋅指蛋白識別并結合一個特異的三聯體堿基。鋅指蛋白源自轉錄調控因子家族(transcription fa
基因編輯細胞療法
17日,Sangamo Therapeutics公司宣布,歐洲藥品管理局(EMA)孤兒藥委員會(COMP)公布了詳細資料,支持授予其在研體外基因編輯細胞療法BIVV003孤兒藥資格,治療鐮刀型細胞貧血病(SCD)。
基因編輯crispr原理
ZFNZFN,即鋅指核糖核酸酶,由一個 DNA 識別域和一個非特異性核酸內切酶構成。DNA 識別域是由一系列 Cys2-His2鋅指蛋白(zinc-fingers)串聯組成(一般 3~4 個),每個鋅指蛋白識別并結合一個特異的三聯體堿基。鋅指蛋白源自轉錄調控因子家族(transcription fa
基因編輯的好處
優點:由于基因技術在生物工程中的特殊作用,基因技術革命是繼工業革命、信息革命之后對人類社會產生深遠影響的一場革命。它在基因制藥、基因診斷、基因治療等技術方面所取得的革命性成果,將極大地改變人類生命和生活的面貌。同時,基因技術所帶來的商業價值無可估量。從事此類技術研究和開發企業的發展前景無疑十分廣闊。
基因編輯crispr原理
ZFNZFN,即鋅指核糖核酸酶,由一個 DNA 識別域和一個非特異性核酸內切酶構成。DNA 識別域是由一系列 Cys2-His2鋅指蛋白(zinc-fingers)串聯組成(一般 3~4 個),每個鋅指蛋白識別并結合一個特異的三聯體堿基。鋅指蛋白源自轉錄調控因子家族(transcription fa
動植物組織mRNA提取實驗方法
一、材料? 水稻葉片或小鼠肝組織。? 二、設備? 研缽,冷凍臺式高速離心機,低溫冰箱,冷凍真空干燥器,紫外檢測儀,電泳儀,電泳槽。 三、試劑? 1、無RNA酶滅菌水:用將高溫烘烤的玻璃瓶(180℃ 2小時)裝蒸餾水,然后加入0.01%的DEPC(體積/體積),處理過夜后高壓滅菌。? 2、
基因編輯專家亓磊:人類可以通過編輯基因根治癌癥
11月6日,2016年騰訊WE大會在北京北展劇場舉行,騰訊公司首席探索官David Wallerstein、奇點大學聯合創始人Peter Diamandis等人參加大會,并就航空、引力波、科技藝術、AR等前沿話題發表演講。 基因編輯領域專家、斯坦福大學生物工程系和化學與系統生物學系助理教授亓磊