就像從電影中刪掉的片段一樣,生物基因中的一些序列最終也會被剪掉,細胞不會利用它們制造蛋白質。現在,兩項研究發現,這些被稱為內含子的片段有助于酵母在艱難時期存活。這項研究揭示了DNA的另一種可能的功能,科學家曾認為這種功能是無用的。 未參與該研究的美國加州舊金山州立大學進化分子生物學家Scott Roy說:“這些結果非常令人信服,也非常令人興奮。”這項研究開啟了了解“內含子作用的全新范式”。 加州大學洛杉磯分校酵母微生物學家Guillaume Chanfreau說,這也回答了一個長期存在的問題:為什么酵母保留了以前被認為是“垃圾DNA”的東西。 內含子普遍存在于植物和真菌中,也存在于人類和其他動物體內——在大約2萬個基因中,每個基因平均攜帶8個內含子。在最初將它們視為垃圾之后,研究人員最近開始確定內含子的某些功能。例如,一些基因中的內含子可能有助于控制細胞制造多少相應的蛋白質。 為了確定剝奪內含子的影響,加拿大謝布魯......閱讀全文
內含子(intron)的存在,是真核細胞蛋白質編碼基因與原核細胞最大的區別。在真核細胞基因表達的過程中,需要經過RNA剪接反應將其去除。一般來說,內含子的長度遠比編碼蛋白的外顯子序列長,并且執行剪接反應的酶——剪接體高度復雜,由170多個相關蛋白組成。剪接反應需要高度精準,移碼錯位一個堿基都會導
核酸分子雜交技術由于核酸分子雜交的高度特異性及檢測方法的靈敏性,它已成為分子生物學中最常用的基本技術,被廣泛應用于基因克隆的篩選,酶切圖譜的制作,基因序列的定量和定性分析及基因突變的檢測等。其基本原理是具有一定同源性的原條核酸單鏈在一定的條件下(適宜的溫室度及離子強度等)可按堿基互補原成雙鏈。雜交的
一、雜交通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交可在DNA與DNA、RNA與RNA或RNA與DNA的
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
一、概述 前面已經介紹了核酸分子單鏈之間有互補的堿基順序,通過堿基對之間非共價鍵(主要是氫鍵)的形成即出現穩定的雙鏈區,這是核酸分子雜交的基礎。雜交分子的形成并不要求兩條單鏈的堿基順序完全互補,所以不同來源的核酸單鏈只要彼此之間有一定程度的互補順序(即某種程度的同源性)就可以形成雜交雙鏈。分子雜交
2.包涵體的分離與純化細胞破碎時提取細胞內產物的關鍵。對于細菌的裂解常用的有酶溶法、超聲破碎法、化學滲透法、玻璃珠研磨等。包涵體可通過超聲波、勻漿等常規的方法是菌體破碎后,離心就可得到。密度梯度離心后可得到高純度的包涵體。包涵體一般不溶于水,為了獲得可溶性的蛋白質可加入強蛋白質變性劑后使其溶解。一般
CRISPR-Cas9系統為研究者提供了精準編輯DNA的技術手段,如今,研究人員又利用它開發出了靶向釀酒酵母(S. cerevisiae)單基因的技術,研究人員通過刪除DNA序列中1個堿基即可關閉基因。這種基因組級別的生物工程與傳統的靶向單個基因或有限數量基因的策略相比,未來將更方便研究者獨立研
經過將近5000億次的嘗試,美國德克薩斯大學(UT)奧斯汀分校的研究人員,見證了一個罕見的事件,也許解決了一個進化的難題:內含子——位于基因中的非編碼DNA序列,在基因組中是如何增加的。研究結果發表在《PNAS》雜志上,解決了關于新物種進化的基本問題,并可以增進我們對于“基因表達以及癌
1. 真核生物表達的優越性和必要性① 真核生物具有轉錄后加工系統,可識別并刪除基因中的內含子,剪切加工為成熟mRNA.②具備完善的翻譯后加工系統,可進行糖基化、乙酰化等修飾,使蛋白形成正確的天然構型,因而真核生物表達系統產生的蛋白更接近天然狀態,有利于其功能、生物活性的研究。③某些真核細胞可將基因表
iNature 2019年9月4日,中國學者在Nature連續發表了6項成果,涉及生命科學,天文學,地球科學等不同的領域,iNature系統介紹這些成果: 【1】混合譜系白血病(MLL)家族的甲基轉移酶 -包括MLL1,MLL2,MLL3,MLL4,SET1A和SET1B-在賴氨
一直以來,科學家們對許多真核蛋白編碼基因中散布的沒有明顯生物學功能的非編碼DNA片段到底起什么作用感到困惑。這些被稱為內含子的序列通常在轉錄和翻譯的時候,從它們的原始序列剪接出來并在蛋白質產生之前迅速被破壞。 1月16日Nature雜志上發表的兩項最新研究意外發現了內含子的新作用(至少在酵母中
原核表達系統是常被用來研究基因功能的成熟系統,由于原核表達系統具有包涵體蛋白不易純化、蛋白修飾不完整等缺陷,人們也開始利用真核細胞表達系統來研究基因。自上世紀70年代基因工程 技術誕生以來,基因表達技術已滲透到生命科學研究的各個領域。并隨著人類基因組計劃實施的進行,在技術方法上得到了很大發展,時至今
能夠準確地修復自發的錯誤、氧化或誘變劑導致的DNA損傷對于細胞生存至關重要。這種修復通常是利用完全相同或同源的完整DNA序列來實現。但科學家們現在證實,在一種常見芽殖酵母細胞內RNA可充當模板用來修復破壞性最大的DNA損傷——DNA雙鏈斷裂。 盡管較早的研究表明了將RNA寡核苷酸導入到細胞中可
(3)原核生物的基因組基本上是單倍體,而真核基因組是二倍體。(4)如前所述,細菌多數基因按功能相關成串排列,組成操縱元的基因表達調控的單元,共同開啟或關閉,轉錄出多順反子(polycistron)的mRNA;真核生物則是一個結構基因轉錄生成一條mRNA,即mRNA是單順反子(monocistron)
在基因表達研究中,研究者比較注意選擇合適的表達載體和宿主系統,而往往忽視基因本身是否與載體和宿主系統為最佳匹配這樣一個實質性問題。基因的最佳化表達可以通過對基因的重新設計和合成來實現,如消除稀有密碼子而利用最佳化密碼子,二級結構最小化,調整GC含量等。以下就密碼子最佳化、翻譯終止效率和真核細胞
在基因表達研究中,研究者比較注意選擇合適的表達載體和宿主系統,而往往忽視基因本身是否與載體和宿主系統為最佳匹配這樣一個實質性問題。基因的最佳化表達可以通過對基因的重新設計和合成來實現,如消除稀有密碼子而利用最佳化密碼子,二級結構最小化,調整GC含量等。以下就密碼子最佳化、翻譯終止效率和真
DNA重組技術(或基因工程)是20世紀生物學的偉大成就,并已滲透到生命科學包括醫學 各個領域,為腫瘤的實驗研究和臨床診斷及治療提供了嶄新的技術和有用的工具。本附錄扼要介紹在分子腫瘤學領域中常用的分子生物學基本技術及其在腫瘤研究中的應用,著重介紹它們的原理和應用。至于具體的技術方法和操作步驟可參閱《分
上一期為大家介紹了過去一年里CRISPR技術在動物造模及單堿基技術方面取得的重大突破。本期繼續為大家從功能基因組篩選、細胞譜系示蹤及疾病診斷方面談談CRISPR-Cas系統的技術運用。 一、大規模基因功能的篩選 盡管測序和基因組編輯技術取得了重大進展,但是解析復雜的基因型-表型關系仍
上一期為大家介紹了過去一年里CRISPR技術在動物造模及單堿基技術方面取得的重大突破。本期繼續為大家從功能基因組篩選、細胞譜系示蹤及疾病診斷方面談談CRISPR-Cas系統的技術運用。 一、大規模基因功能的篩選 盡管測序和基因組編輯技術取得了重大進展,但是解析復雜的基
基因敲除可以說是基因組 學、細胞分離培養以及轉基因技術的組合。那么基因敲除的原理是什么呢? 基因敲除的方法有哪些呢?在此,做個小結,以供大家學習。一.概述:基因敲除是自80年代末以來發展起來的一種新型分子 生物學技術,是通過一定的途徑使機體特定的基因失活或缺失的技術。通常意義上的基因敲除主要是應用D
哥倫比亞大學的一項小鼠研究發現了其中驚人的奧秘:基因組可以通過三維空間重新排列,協調每個神經元中這些基因的調控,從而產生生物多樣性,檢測到這許許多多種的氣味。 英國著名雜志《Nature》周刊是世界上最早的國際性科技期刊,自從1869年創刊以來,始終如一地報道和評論全球科技領域里最重要的突破。
我們的細胞中進行著激烈的基因戰爭,入侵的外源DNA頻頻試圖破壞人類的基因藍圖。現在,加州大學舊金山分校UCSF的研究人員發現了,細胞保護自身基因抵抗入侵者的新分子機制。 這一機制負責識別和靶標外源DNA,被研究人員稱為SCANR。UCSF的研究人員是在酵母中發現SCANR機制的,由于酵母與
現代分子生物學和免疫學的進展加深了我們對許多疾病的了解,并且導致了免疫新策略的產生,免疫學檢測方法可分為體液免疫和細胞免疫測定。本文盤點了與免疫學有關的分子生物學實驗技術匯總。 一、GST pull-down實驗 GST是指谷胱甘肽巰基轉移酶,GST pull-down實驗是一個行之有效的驗
9月9日下午,有“中國版諾貝爾獎”之稱的第二屆“未來科學大獎”在北京揭曉。清華大學教授、結構生物學家施一公,中國科學技術大學教授、量子通信衛星“墨子號”首席科學家潘建偉,北京大學國際數學研究中心教授許晨陽分別獲得“生命科學獎”、“物質科學獎”和“數學與計算機科學獎”,獎金各為100萬美元。 百
一滴殘留在裙子上的精液使得美國總統Bill Clinton不得不坦承他與白宮實習生有不正當的關系。因為他知道現在的生物科技就連一個精子也能被用來做為證據。這種將極微量的生物標本化為可供鑒定的現代技術正是PCR(Polymerase chain reaction)--聚合
來自國家自然科學基金委員會的消息,國家自然科學基金委員會公布了2012年度面上項目、重點項目、重大國際(地區)合作研究項目、青年科學基金項目、地區科學基金項目、海外及港澳學者合作研究基金項目、科學儀器基礎研究專款項目等方面的評審結果。有關評審結果將通知相關依托單位,其科研管理人員可登錄
RNAi技術RNA干擾(RNA interference, RNAi)是近年來發現的研究生物體基因表達、調控與功能的一項嶄新技術,它利用了由小干擾RNA(small interfering RNA, siRNA)引起的生物細胞內同源基因的特異性沉默(silencing)現象,其本質是siRNA與對應
實驗材料 大腸桿菌菌株 HB101 質粒 pSPL3 COS-7 細胞 載體 pBluescriptⅡ
實驗概要1. CRISPR的介紹: CRISPR的全稱為Clustered Regularly Interspaced Short Palindromic Repeats(規律成簇的間隔短回文重復序列)。實際上就是一種基因編輯器,由于細
一些真核蛋白在原核宿主細胞中的表達不但行之有效而且成本低廉,然而許多在細菌中合成的真核蛋白或因折疊方式不正確,或因折疊效率低下,結果使得蛋白活性低或無活性。不僅如此,真核生物蛋白的活性往往需要翻譯后加工,例如二硫鍵的精確形成、糖基化、磷酸化、寡聚體的