關于β氧化的過程介紹
(1)脂肪酸的活化:脂肪酸的氧化首先須被活化,在ATP、CoA-SH、Mg2+存在下,由位于內質網及線粒體外膜的脂酰CoA合成酶,催化生成脂酰CoA。活化的脂肪酸不僅為一高能化合物,而且水溶性增強,因此提高了代謝活性。 (2)脂酰CoA的轉移:是在胞液中進行的,而催化脂肪酸氧化的酶系又存在于線粒體基質內,故活化的脂酰CoA必須先進入線粒體才能氧化,但已知長鏈脂酰輔酶A是不能直接透過線粒體內膜的,因此活化的脂酰CoA要借助肉堿(camitine),即L-3羥-4-三甲基銨丁酸,而被轉運入線粒體內,在線粒體內膜的外側及內側分別有肉堿脂酰轉移酶I和酶Ⅱ,兩者為同工酶。位于內膜外側的酶Ⅰ,促進脂酰CoA轉化為脂酰肉堿,后者可借助線粒體內膜上的轉位酶(或載體),轉運到內膜內側,然后,在酶Ⅱ催化下脂酰肉堿釋放肉堿,后又轉變為脂酰CoA。這樣原本位于胞液的脂酰CoA穿過線粒體內膜進入基質而被氧化分解。一般10個碳原子以下的活化脂肪酸不需......閱讀全文
關于β氧化的過程介紹
(1)脂肪酸的活化:脂肪酸的氧化首先須被活化,在ATP、CoA-SH、Mg2+存在下,由位于內質網及線粒體外膜的脂酰CoA合成酶,催化生成脂酰CoA。活化的脂肪酸不僅為一高能化合物,而且水溶性增強,因此提高了代謝活性。 (2)脂酰CoA的轉移:是在胞液中進行的,而催化脂肪酸氧化的酶系又存在于線
關于β氧化的發現過程介紹
β氧化作用的提出是在二十世紀初,Franz Knoop 在此方面作出了關鍵性的貢獻。他將末端甲基上連有苯環的脂肪酸喂飼狗,然后檢測狗尿中的產物。結果發現,食用含偶數碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇數碳的脂肪酸的狗的尿中有苯甲酸的衍生物馬尿酸。 Knoop由此推測無論脂肪酸
脂肪酸氧化的β氧化過程的介紹
脂酰CoA在線粒體基質中進入β氧化要經過四步反應,即脫氫、加水、再脫氫和硫解,生成一分子乙酰CoA和一個少兩個碳的新的脂酰CoA。 第一步脫氫(dehydrogenation)反應由脂酰CoA脫氫酶活化,輔基為FAD,脂酰CoA在α和β碳原子上各脫去一個氫原子生成具有反式雙鍵的α,β-烯脂肪酰
肌糖原氧化酵解的過程介紹
1.糖原在磷酸化酶的作用下,先釋放出還原末端的一個葡萄糖單位并且和1分子磷酸結合生成葡萄糖-1-磷酸 2.葡萄糖-1-磷酸 (glucose-1-phosphate,G-1P)在變位酶(mutase)的作用下轉變為葡萄糖-6-磷酸 3.葡萄糖-6-磷酸 (glucose-6-phosphat
脂肪酸氧化的過程介紹
(1)脂肪酸的活化:脂肪酸的氧化首先須被活化,在ATP、CoA-SH、Mg2+存在下,脂肪酸由位于內質網及線粒體外膜的脂酰CoA合成酶催化生成脂酰CoA。活化的脂肪酸不僅為一高能化合物,而且水溶性增強,因此提高了代謝活性。 (2)脂酰CoA的轉移:脂肪酸活化是在胞液中進行的,而催化脂肪酸氧化的
脫落酸氧化過程介紹
ABA的氧化產物是紅花菜豆酸(phaseic acid)和二氫紅花菜豆酸(dihydrophasei acid)。紅花菜豆酸的活性極低,而二氫紅花菜豆酸無生理活性。
不同脂肪酸的氧化過程介紹
在氧供給充足的條件下,脂肪酸可在體內分解成二氧化碳和水,釋出大量能量。除腦組織和成熟紅細胞外,大多數組織均能氧化脂肪酸,但以肝及肌肉組織最活躍。1.脂肪酸的活化——脂酰CoA的生成脂肪酸的活化反應在胞液中進行,脂肪酸在脂酰CoA合成酶(acyl-CoA synthetase)催化下,在ATP、CoA
關于β氧化的說明介紹
脂肪酸是由一條長的烴基上附加一個羧基的化合物,溶解度一般不大,主要來源于脂肪在人體消化道內的水解。 碳原子個數為偶數的脂肪酸進入人體后,其羧基在細胞質基質中與乙酰輔酶A(乙酰CoA)結合,之后循環往復地被催化脫去乙基,產生新的乙酰CoA,直至碳原子全部脫去。 新產生的乙酰CoA大多進入線粒體
關于β氧化的基本介紹
在肝臟內脂肪酸經β-氧化作用生成乙酰輔酶A,兩分子的乙酰輔酶A可縮合生成乙酰乙酸。乙酰乙酸可脫羧生成丙酮,也可還原生成β-羥丁酸。乙酰乙酸、β-羥丁酸和丙酮總稱為酮體。肝臟不能利用酮體,必須經血液運至肝外組織特別是肌肉和腎臟,再轉變為乙酰輔酶A而被氧化利用。酮體作為有機體代謝的中間產物,在正常的
關于糖異生的過程介紹
糖異生的主要前體是乳酸、丙酮酸、氨基酸及甘油等。在反芻動物的消化道中,經細菌作用能將大量纖維素等轉變成丙酸,后者在體內也可轉變成糖。 過程分兩階段: ①各種糖異生前體(除甘油外)轉變成磷酸烯醇式丙酮酸; ②磷酸烯醇式丙酮酸轉變為6-磷酸葡萄糖,再生成各種單糖或多糖。 從丙酮酸開始合成糖的
關于翻譯的過程介紹
翻譯過程需要的原料:mRNA、tRNA、21種氨基酸、能量、酶、核糖體。 翻譯的過程大致可分作三個階段:起始、延長、終止。翻譯主要在細胞質內的核糖體中進行,氨基酸分子在氨基酰-tRNA合成酶的催化作用下與特定的轉運RNA結合并被帶到核糖體上。生成的多肽鏈(即氨基酸鏈)需要通過正確折疊形成蛋白質
單胺氧化酶的檢查過程介紹
單胺氧化化酶主要作用于-CH-NH2基團,在氧參與下,催化一種單胺氧化,生成相應的醛、氨和過氧化化氫。以芐醛偶氮-β-萘酚為底物,在O2和H2O參與下,MAO催化生成芐醛偶氮-β-萘酚(氨及過氧化化氫),用環己烷抽提后直接比色測定。
關于氧化脫羧的基本介紹
氧化脫羧(oxidative decarboxylation)是伴隨著氧化而引起的脫羧反應。多數是伴隨著如丙酮酸、α-酮戊二酸那樣的α-羰基羧酸、蘋果酸、異檸檬酸等的羥基羧酸的脫氫反應而引起的脫羧。催化該反應的酶分類上屬于氧化還原酶。
關于丙酸氧化的基本介紹
奇數碳原子脂肪酸,經過β-氧化除生成乙酰CoA外還生成一分子丙酰CoA,某些氨基酸如異亮氨酸、蛋氨酸和蘇氨酸的分解代謝過程中有丙酰CoA生成,膽汁酸生成過程中亦產生丙酰CoA。丙酰CoA經過羧化反應和分子內重排,可轉變生成琥珀酰CoA,可進一步氧化分解,也可經草酰乙酸異生成糖的反應過程。
關于氧化脫羧的定義介紹
氧化脫羧是伴隨著氧化而引起的脫羧反應。多數是伴隨著如丙酮酸、α-酮戊二酸那樣的α-羰基羧酸,蘋果酸、異檸檬酸等的羥基羧酸的脫氫反應而引起的脫羧。 環己基甲酸在醋酸鉛與醋酸銅的作用下,在苯中回流生成環己烯,這是一個kochi反應,是均裂脫羧生成烯烴的反應。? 反應機理 環己基甲酸與醋酸鉛作用
糖的有氧氧化過程
葡萄糖→丙酮酸→乙酰輔酶A→CO2+H2O。此過程在只能有線粒體的細胞中進行,并且必須要有氧氣供應。糖的有氧氧化是機體獲得ATP的主要途徑,1分子葡萄糖徹底氧化為二氧化碳和水可合成30或32分子ATP(過去的理論值為36或38分子ATP)。
關于分子蒸餾的過程介紹
短程蒸餾器還適合于進行分子蒸餾。分子流從加熱面直接到冷凝器表面。分子蒸餾過程可發如下四步: 分子從液相主體向蒸發表面擴散 通常,液相中的擴散速度是控制分子蒸餾速度的主要因素,所以應盡量減薄液層厚度及強化液層的流動。 分子在液層表面上的自由蒸發 蒸發速度隨著溫度的升高而上升,但分離因素有時
關于牙菌斑的形成過程介紹
牙菌斑,即“細菌社區”的建立、成熟需要經歷三個階段: 首先唾液中的營養物質吸附在牙齒表面,構成“社區”肥沃的“土壤”,即獲得性薄膜形成。這個過程在剛清潔過的牙面上,數分鐘內便可形成,1-2小時迅速增厚。 “土壤”形成之后,便可吸引細菌來定居,同時為細菌提供營養,即細菌粘附和共聚。首先會有先驅
關于免疫應答的過程介紹
適應性免疫應答可分為三個階段: 1.識別階段:T細胞和B細胞分別通過TCR和BCR精確識別抗原,其中T細胞識別的抗原必須由抗原提呈細胞來提呈; 2.活化增殖階段:識別抗原后的淋巴細胞在協同刺激分子的參與下,發生細胞的活化、增殖、分化,產生效應細胞(如殺傷性T細胞)、效應分子(如抗體、細胞因子
關于克隆實驗的過程介紹
先將含有遺傳物質的供體細胞的核移植到去除了細胞核的卵細胞中,利用微電流刺激等使兩者融合為一體,然后促使這一新細胞分裂繁殖發育成胚胎,當胚胎發育到一定程度后,再被植入動物子宮中使動物懷孕,便可產下與提供細胞者基因相同的動物。這一過程中如果對供體細胞進行基因改造,那么無性繁殖的動物后代基因就會發生相
關于糖異生作用的過程介紹
1、凡是能生成草酰乙酸的物質都可以變成葡萄糖。例如三羧酸循環的中間物,檸檬酸、異檸檬酸、α-酮戊二酸、琥珀酸、延胡索酸和蘋果酸都可以轉變成草酰乙酸而進入糖異生途徑。 2、大多數氨基酸是生糖氨基酸如丙氨酸、谷氨酸、天冬氨酸、絲氨酸、半胱氨酸、甘氨酸、精氨酸、組氨酸、蘇氨酸、脯氨酸、谷胺酰胺、天冬
關于中間代謝的過程介紹
中間代謝也稱為細胞內代謝。在中間代謝過程中,機體借助于各種反應從營養素或消化產物中獲得能量,以及機體構成所需要的“原材料”。整個中間代謝可以劃分為兩個過程,即分解代謝和合成代謝,其中分解代謝主要完成獲取能量和“原材料”的工作,而合成代謝則主要完成利用貯能和“原材料”構成機體組成成分的任務。 在
關于化學滲透的過程介紹
①電子傳遞從NADH開始,復合物Ⅰ將還原型的NADH氧化,釋放出的兩個電子和一個H+質子被NADH脫氫酶上的黃素單核苷酸(FMN)接受,同時從基質中攝取一個H+ 將FMN還原成FMNH2,NADH被氧化成NAD+重新進入TCA循環; ②FMNH2 將一對H+質子傳遞到膜間隙,同時將一對電子經鐵
關于變應原的基本過程介紹
變態反應的發生可分為兩個階段:致敏階段,當機體初次接觸變應原后,需要有一個潛伏期(1~2周),免疫活性細胞才能產生相應抗體或致敏淋巴細胞,在此期間機體無任何異常反應,但已具備了發生變態反應的潛在能力。變態反應發生階段,當致敏機體再次與同一變應原接觸,變應原與相應抗體或致敏淋巴細胞結合,引起機體生
關于基因的認識過程介紹
從孟德爾定律的發現,一百多年來人們對基因的認識在不斷深化。 1866年,奧地利學者G.J.孟德爾在他的豌豆雜交實驗論文中,用大寫字母A、B等代表顯性性狀如圓粒、子葉黃色等,用小寫字母a、b等代表隱性性狀如皺粒、子葉綠色等。他并沒有嚴格地區分所觀察到的性狀和控制這些性狀的遺傳因子。但是從他用這些
關于多肽的合成過程介紹
除去保護 Fmoc保護的柱子和單體必須用一種堿性溶劑(piperidine)去除氨基的保護基團。 激活和交聯 下一個氨基酸的羧基被一種激活劑所激活。化學工藝常用HBTU/HCTU/HITU/HATU+NMM/DIPEA或HOBT+DIC作激活劑,激活的單體與游離的氨基反應交聯,形成肽鍵。在
關于基因轉錄的過程介紹
(1)基因轉錄— 轉錄的啟動 DNA上存在著轉錄的起始信號,它是特殊的核苷酸序列,稱為啟動子。 轉錄是由RNA聚合酶全酶結合于啟動子而被啟動的。 其機理是:s因子能識別啟動子,并識別有義鏈,它與核心酶結合,引導核心酶定位到啟動子部位。 (2)基因轉錄—?轉錄的起始 當聚合酶結合到啟動子
關于抗氧劑的應對氧化的介紹
對于生物體的代謝有一種自相矛盾的情況,雖然大部分地球上的生物需要氧氣來維持生存,但同時氧氣又是一種高反應活性的分子,可以通過產生活性氧物質破壞生物體。所以生物體中建立了一套由抗氧化的代謝產物和酶構成的復雜網絡系統,通過有抗氧化作用的代謝中間體和產物與酶之間的協同配合使得重要的細胞成分比如DNA、
關于石灰水(氫氧化鈣的水溶液)的配置過程介紹
1、石灰水(氫氧化鈣的水溶液)的配制分析: 根據生石灰與水反應生成氫氧化鈣,又因為氫氧化鈣微溶于水,把沒有溶解的氫氧化鈣除去,就可得到氫氧化鈣溶液。 2、石灰水(氫氧化鈣的水溶液)的配制過程: 配制的氫氧化鈣溶液的溶質是氫氧化鈣,所以要制取氫氧化鈣,已知藥品中含有生石灰和蒸餾水,所以用生石
鋁陽極氧化過程
陽極氧化膜的生長過程一個復雜的生長機理,受到很多因素的影響,比如電解液性質、濃度及種類、反應溫度與時間、材料表面成分及性質、電流密度、工作電壓及形式。